Биологическая роль железа (165118)

Посмотреть архив целиком




СОДЕРЖАНИЕ:



  1. Биологическая роль железа

  2. Железосодержащие органические соединения в организме человека

  3. Кинетика обмена железа

  4. Этиология дефицита железа

  5. Роль питания

  6. Диагностическое и лечебное применение железа

  7. Библиография










БИОЛОГИЧЕСКАЯ РОЛЬ ЖЕЛЕЗА

Для нормального роста и выполнения биологических
функций человеку и животным кроме витаминов необходим целый
ряд неорганических элементов. Эти элементы можно разделить на 2
класса макроэлементы и микроэлементы.

Макроэлементы, к которым относятся кальций, магний,
натрий, калий, фосфор, сера и хлор, требуются организму в
относительно больших количествах
(порядка нескольких граммов в
сутки). Часто они выполняют более чем одну функцию.

Более непосредственное отношение к действию
ферментов имеют незаменимые микроэлементы, суточная
потребность в которых не превышает нескольких миллиграммов, т.е.
сопоставима с потребностью в витаминах. Известно, что в пище
животных обязательно должно содержаться около 15
микроэлементов.

Большинство незаменимых микроэлементов служит в
качестве кофакторов или простетических групп ферментов. При этом
они выполняют какую-нибудь одну функцию из трех (по меньшей
мере) возможных функций. Во-первых, незаменимый микроэлемент
сам по себе может обладать каталитической активностью по
отношению к той иди иной химической реакции, скорость которой в
значительной степени возрастает в присутствии ферментного белка.
Это особенно характерно для ионов железа и меди. Во-вторых, ион
металла может образовывать комплекс одновременно и с субстратом
и с активным центром фермента, в результате оба они сближаются
друг с другом и переходят в активную форму. Наконец, в-третьих,
ион металла может играть роль мощного акцептора электронов на
определенной стадии каталитического цикла.

Железо относится к тем микроэлементам,
биологические функции которых изучены наиболее полно.

Значение железа для организма человека, как и в
целом для живой природы, трудно переоценить. Подтверждением
этому может быть не только большая распространенность его в
природе, но и важная роль в сложных метаболических процессах,
происходящих в живом организме. Биологическая ценность железа
определяется многогранностью его функций, незаменимостью
другими металлами в сложных биохимических процессах, активным

участием в клеточном дыхании, обеспечивающем нормальное
функционирование тканей и организма человека.

Железо принадлежит к восьмой группе элементов
периодической системы Д. И. Менделеева (атомный номер 26,
атомный вес 55,847 , плотность 7,86 г/см). Ценным его свойством
является способность легко окисляться и восстанавливаться,
образовывать сложные соединения со значительно отличающимися
биохимическими свойствами, непосредственно участвовать в
реакциях электронного транспорта.

ЖЕЛЕЗОСОДЕРЖАЩИЕ
ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

В ОРГАНИЗМЕ ЧЕЛОВЕКА

Железо, находящееся в организме человека, можно
разбить на 2 большие группы: клеточное и внеклеточное.
Соединения железа в клетке, отличающиеся различным строением,
обладают характерной только для них функциональной активностью
и биологической ролью для организма. В свою очередь их можно
подразделить на 4 группы:

1. гемопротеины, основным структурным элементом которых
является гем (гемоглобин, миоглобин, цитохромы, каталаза и
пероксидаза);

2. железосодержащие ферменты негеминовой группы (сукцинат-де-
гидрогеназа, ацетил - коэнзим А - дегидрогеназа, НАДН ,- цитохром
С-редуктаза и др.);

3. ферритин и гемосидерин внутренних органов;

4. железо, рыхло связанное с белками и другими органическими
веществами.

Ко второй группе внеклеточных соединений железа
относятся железо-связывающие белки трансферрин и лактоферрин,
содержащиеся во внеклеточных жидкостях.

КЛЕТОЧНОЕ ЖЕЛЕЗО


Гемоглобин, содержащийся в эритроцитах, выполняет

важную для организма газотранспортную функцию - переносит

экзогенный кислород и эндогенный углекислый газ. Эритроцит по

отношению к гемоглобину играет роль буферной системы, способной

регулировать общую величину газотранспортной функции.


Дыхательный пигмент крови - сложный белок, состоящий

из белковой молекулы - глобина, соединенной полипептидными цепочками с 4 комплексами гема. Глобин состоит из 2 пар ( ) полипептидных цепочек, каждая из которых содержит 141-146 аминокислот. Гем, составляющий 4% веса молекулы гемоглобина, содержит железо в центре порфиринового кольца. У здорового человека гемоглобин гетерогенен. Нормальный эритроцит содержит приблизительно 30 пг. гемоглобина, в котором находится 0,34% железа.

Миоглобин - дыхательный белок сердечной и
скелетной мускулатуры. Он состоит из единственной полипептидной
цепочки, содержащей 153 аминокислоты и соединенный с
гемпростетической группой. Основной функцией миоглобина
является транспортировка кислорода через клетку и регуляция его
содержания в мышце для осуществления сложных биохимических
процессов, лежащих в основе клеточного дыхания. Он содержит
0,34% железа. Миоглобин депонирует кислород во время
сокращения мышц, а при их поражении он может попадать в кровь и
выделяться с мочой.

Железосодержащие ферменты и негеминовое
железо клетки находится главным образом в митохондриях.
Наиболее изученными и важными для организма ферментами
являются цитохромы, каталаза и пероксидаза.

Цитохромы делятся на 4 группы в зависимости от
строения геминовой группы:


  • А - цитохромы с гем - группой, соединяющей формилпорфин;

  • В - цитохромы с протогем - группой;

  • С - цигохромы с замещенной мезогем - группой;

  • Д - цитохромы с гем - группой, соединяющей дегидропорфин.

В организме человека содержатся следующие цитохромы:

а1, аз, в, в5, с, с1, Р450. Они представляют собой липидные комплексы

гемопротеинов и прочно связаны с мембраной митохондрии. Однако,

цитохромы в5 и Р450 находятся в эндоплазматическом ретикулюме,

а микросомы содержат НАДН- цитохром С - редуктазу. Существует

мнение, что митохондриальное дыхание необходимо для процессов
дифференцировки тканей, а внемитохондриальное играет важную
роль в процессах роста и дыхания клетки. Основной биологической
ролью большинства цитохромов является участие в переносе
электронов, лежащих в основе процессов терминального окисления в
тканях.


Цитохромоксидаза является конечным ферментом
митохондриального транспорта электронов - электронотранспортной
цепочки, ответственным за образование АТФ при окислительном
фосфолировании в митохондриях. Показана тесная зависимость

между содержанием этого фермента в тканях и утилизацией ими
кислорода.


Каталаза, как и цитохромоксидаза, состоит из единственной полипептидной цепочки, соединенной с гем - группой.
Она является одним из важнейших ферментов, предохраняющих
эритроциты от окислительного гемолиза. Каталаза выполняет
двойную функцию в зависимости от концентрации перекиси
водорода в клетке. При высокой концентрации перекиси водорода
фермент катализирует реакцию ее разложения, а при низкой - и в
присутствии донора водорода
(метанол, этанол и др.) становится
преобладающей пероксидазная активность каталазы.

Пероксидаза содержится преимущественно в лейкоцитах и слизистой тонкого кишечника у человека. Она также
обладает защитной ролью, предохраняя клетки от их разрушения
перекисными соединениями. Миелопероксидаза - железосодержащий

геминовый фермент, находящийся в азурофильных гранулах

нейтрофильных лейкоцитов и освобождается в фагоцитирующие вакуоли

в течение лизиса гранул.


Активированное этим ферментом разрушение белка клеточной стенки бактерий является смертельным для микроорганизма, а
активированное им йодинирование частиц относится к бактерицидной

функции лейкоцитов. .

К железосодержащим относятся и флавопротеиновые ферменты,

в которых железо не включено в геминовую группу и необходимо только для реакций переноса.


Наиболее изученной является
сукцинатдегидрогеназа,

которая наиболее активна в цикле трикарбоновых кислот. Митохондриальные мембраны свободно проницаемы для субстрата фермента.


Негеминовое железо, локализующееся главным
образом в митохондриях клетки, играет существенную роль в дыхании

клетки, участвуя в окислительном фосфолировании и транспорте

электронов при терминальном окислении, в цикле трикарбоновых

кислот.

Ферритин и гемосидерин - запасные
соединения железа в клетке, находящиеся главным образом в
ретикулоэндотелиальной системе печени, селезенки и костного
мозга. Приблизительно одна треть резервного железа организма
человека, преимущественно в виде ферритина, падает на долю
печени. Запасы железа могут быть при необходимости
мобилизованы для нужд организма и предохраняют его от
токсичного действия свободно циркулирующего железа.


Известно, что гепатоциты и купферовские клетки
печени участвуют в создании резервного железа, причем в
нормальной печени большая часть пегом и нового железа обнаружена
в гепатоцитах в виде ферритина. При парентеральном введении
железа как гепатоциты, так и кунферовские клетки печени
аккумулируют большое количество дополнительного ферритина,
хотя последние имеют тенденцию запасать относительно больше из
лишнего негеминового железа в виде гемосидерина.


Случайные файлы

Файл
17144-1.rtf
30224-1.rtf
57253.rtf
95384.rtf
68410.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.