Адсорбция полимеров на границе раздела твердое тело - водный раствор (ADSORB1)

Посмотреть архив целиком

4



СОДЕРЖАНИЕ



Введение

. . . . . . . . . . . . . . . . . . . . . 2

Адсорбционное взаимодействие на границе раздела фаз и свойства граничных слоев


. . . . . . . . . . . . . . . . . . . . .4

Граничные слои полимеров

на твердых поверхностях

. . . . . . . . . . . . . . . . . . . . .5

Влияние адсорбционного взаимодействия на молекулярную подвижность

полимерных цепей в граничных слоях



. . . . . . . . . . . . . . . . . . . . .6

Изменение свойств граничных слоев как следствие уменьшения молекулярной подвижности


. . . . . . . . . . . . . . . . . . . . .9

Влияние твердой поверхности на надмолекулярные структуры полимеров


. . . . . . . . . . . . . . . . . . . .13

О связи адсорбции полимеров с адгезией

полимеров к поверхностям


. . . . . . . . . . . . . . . . . . . .13

Влияние границы раздела на реакции синтеза и структуру трехмерных полимеров


. . . . . . . . . . . . . . . . . . . .15

Заключение

. . . . . . . . . . . . . . . . . . . .21

Литература

. . . . . . . . . . . . . . . . . . . .23

ВВЕДЕНИЕ


Одним из важнейших разделов физической химии полимеров и коллоидной .химии в настоящее время является физико-химия по­верхностных явлений в полимерах [1,2]. Это связано с тем, что создание новых полимерных материалов, начиная от применяющихся в бытовых целях и кончая космической техникой, непосредственно связано с использованием гетерогенных полимерных систем Действительно, большая часть современных полимерных материалов яв­ляется гетерогенными системами с высокоразвитыми поверхностями раздела фаз. Это - армированные пластики, наполненные тер­мопласты, усиленные резины, лакокрасочные покрытия, клеи и др.

Вследствие этого поверхностные явления в полимерах и поли­мерных материалах играют существенную роль во всем комплексе их свойств, и прежде всего, в структурно-механических свойствах, а исследование особенностей поведения макромолекул на границе раздела фаз является сейчас одной из важнейших задач в этой об­ласти. Говоря о проблеме поверхностных явлений в полимерах, нельзя забывать, что она имеет важное значение не только с техни­ческой точки зрения, но и с биологической, поскольку роль поверх­ностных явлении в биологических процессах, где принимают участие молекулы биополимеров, также очень велика. Наконец, проблема существенна и для решения вопросов новой развивающейся облас­ти — применения полимеров в медицине, где поверхностные явления происходят на границе раздела фаз с живыми тканями.

Проблема адсорбции полимеров - весьма разносторонняя и многообразная. Она включает такие важные для тех­ники вопросы, как адгезию полимеров к твердым поверхностям, структуру и свойства монослоев, структурно-механические свойства граничных слоев полимеров, находящихся в контакте с твердыми те­лами, и многие другие. Однако все эти вопросы тесно связаны с од­ним, центральным, вопросом всей проблемы - адсорбцией поли­меров на твердых поверхностях.

Действительно, адгезионное взаимодействие на границе раздела полимер - твердое тело есть, прежде всего, адсорбционное взаимо­действие между двумя телами. Адсорбция полимеров на поверх­ности твердого тела определяет особенности структуры граничного слоя, характер упаковки макромолекул в граничных слоях, а отcюда - молекулярную подвижность цепей и их релаксационные и другие свойства. Процессы адсорбции играют существенную роль не только в комплексе конечных физико-химических и физико-механических свойств полимерных материалов, но и в ходе формиро­вания полимерного материала, при его переработке пли синтезе в тех случаях, когда эти процессы протекают в присутствии твердых тел иной природы - наполнителей. пигментов, на поверхности металлов, стекла и др. Образование клеевых соединений, нанесение лакокра­сочных покрытий и ряд других технологических процессов вклю­чают в себя как первую стадию адсорбцию полимеров из поверхностности. Отсюда вытекает важная роль исследования процессов адсорбции полимеров на твердых поверхностях в большинстве технологических процессов.

Несмотря на то, что процессам адгезии в мировой научной ли­тературе посвящено очень большое число работ [3-14], истинный механизм адгезии с молекулярной точки зрения изучен еще недоста­точно. Существующие и развивающиеся теории адгезии носят ча­стный и ограниченный характер. Электрическая теория адгезии [3-4] рассматривает электрические явления, возникающие при отсла­ивании адгезии от подложки, но не объясняет и не может объяснить самой адгезии, ибо электрические явления возникают в процес­се расслоения, а адгезия нас интересует в условиях, когда адгезионная связь не нарушена. Диффузионная теория адгезии [14] при­менима практически только для случая адгезии полимеров друг к другу. Таким образом, единственно приемлемой сегодня будет адсорбционная теория адгезии, связывающая адгезию с действием межмолекулярных сил на границе раздела, т. е. с адсорбцией. Об­ладая рядом ограничений, присущих любой теории, с физической точ­ки зрения адсорбционная теория является наиболее обоснованной. В частности, представления о возникновении двойного электриче­ского слоя при контакте разнородных поверхностей также есть результат адсорбции и ориентации полярных групп макромолекул на поверхности, т. е. эти представления укладываются в рамки адсорб-цинной теории [4]. Однако развитие этой теории тормозится из-за недостаточной разработанности теории адсорбции макромолекул на твердых поверхностях.

Обобщение и развитие представлений об адсорбции должно стать фундаментом для дальнейшего развития физической химии напол­ненных и армированных полимеров, а также физико-химии нетка­ных полимерных материалов, играющих важную роль в современной промышленности.



АДСОРБЦИОННОЕ ВЗАИМОДЕЙСТВИЕ НА ГРАНИЦЕ РАЗДЕЛА ФАЗ И СВОЙСТВА ГРАНИЧНЫХ СЛОЕВ


Адсорбция полимеров на границе раздела фаз с твердым телом играет важную роль в усиливающем действии наполнителей, адгезии, склеивании и т. п. Адсорбционное взаимодействие является одним из важнейших факторов, определяющих свойства наполненных и армированных полимеров, свойства клеевых прослоек, адгезию полимеров и др. Совершенно очевидно, что многие особенности струк­туры адсорбционных слоев, получаемых при адсорбции полимеров на твердой поверхности из жидкой фазы, должны сохраниться и в та­ких системах, в которых адсорбционное взаимодействие полимера с твердой поверхностью реализуется в отсутствие растворителя, т. с. во всех практически важных системах (армированных и напол­ненных пластиках, покрытиях, клеях и т. п.). Для понимания свойств систем и нахождения путей их регулирования крайне важно знать структуру адсорбционных слоев в таких гетерогенных поли­мерных материалах. Между тем адсорбционные методы, позволяя выявить ряд существенных черт взаимодействия полимеров с твер­дыми поверхностями и поведения полимеров на границе раздела, не могут дать полных сведений о структуре граничных слоев в полимерных материалах. Это связано с тем, что адсорбционные взаимодействия в растворе не идентичны таковым в отсутствие растворителя. Последнее обстоятельство обсловлено отличием конформаций макромолекулярных цепей в растворе от конформаций в высокоэластическом, стеклообразном или кристаллическом и вязкотекучем состояниях.

ГРАНИЧНЫЕ СЛОИ ПОЛИМЕРОВ

НА ТВЕРДЫХ ПОВЕРХНОСТЯХ


Молекулярная подвижность полимеров в граничных слоях определяется гибкостью полимерной цепи н характером ее взаимодействия с поверхностью, т. е. теми же факторами, которыми опреде­ляется адсорбция. При рассмотрении вопроса о молекулярной подвижности следует иметь в виду, что прямое определение молеку­лярной подвижности в адсорбционных слоях полимеров экспери­ментально затруднено и лосих пор в литературе отсутствуют работы, в которых такие исследования были бы проведены действительно на адсорбционных слоях.

Мы имеем в виду необходимость разграничения понятий об адсорбционном и о граничной слое. В соответствии с изложенным, адсорбционным слоем является тот слой макромолекул, который образуется на поверхности вследствие адсорбции на ней полимера из раствора и в котором часть сегментов полимерных цепей находит­ся во взаимодействии с поверхностью Толщина такого адсорбцион­ного слоя определяется конформацией адсорбированных моле­кул, но уже при переходе к более сложным системам, в которых имеет место полимолекулярная адсорбция или адсорбция на поверхности не отдельных макромолекул, а их агрегатов, такое опре­деление становится уже не применимым, так как в этом случае с по­верхностью оказываются связанными не только молекулы полиме­ра, имеющие непосредственные контакты с поверхностью. На такую возможность указано в работах Силберберга, а также в работах Ю С. Липатова н Л. М. Сергеевой [15-17].

Условия образования подобных систем исключают также воз­можность непосредственного исследования свойств граничных слоев Практически нигде (за исключением кристаллизующихся в очень тонких слоях полимеров) нельзя исследовать свойства соб­ственно граничных слоев, и поэтому все выводы делаются на основании изменений, вносимых границей раздела в объемные свойства полимера, т. е. на нахождении некоторых избыточных характеристик. Поэтому все экспериментальные характеристики являются суммой свойств граничного слоя и объема, и суждения о характере измене­ния структуры в граничных слоях делаются на основе анализа направления изменения тех или иных характеристик. В этом случае наиболее удобней моделью для исследования свойств граничных слоев являются наполненные полимеры, которые можно рассматри­вать как систему из частиц твердого тела с тонкими полимерными слоями на поверхности.

ВЛИЯНИЕ АДСОРБЦИОННОГО ВЗАИМОДЕЙСТВИЯ НА МОЛЕКУЛЯРНУЮ ПОДВИЖНОСТЬ

ПОЛИМЕРНЫХ ЦЕПЕЙ В ГРАНИЧНЫХ СЛОЯХ


Адсорбционное взаимодействие полимерных молекул с поверх­ностью, которое имеет место в наполненных системах, можно рас­сматривать как процесс, приводящий к перераспределению межмоле­кулярных связей в системе и к образованию дополнительных узлов физической структурной сетки вследствие взаимодействия сегментов с поверхностью. Образование дополнительных узлов должно снижать молекулярную подвижность как результат структуриро­вания системы. Можно ожидать, что в зависимости от условий полу­чения наполненного полимера и типа взаимодействия цепей с по­верхностью число дополнительных узлов будет различно, а следо­вательно, и свойства поверхностного слоя полимера также будут отличаться. Первым актом образования поверхности и пленки (лакового, покрытия, клеевого соединения и т. п.) является адсорбция молекул полимера поверхностью. В зависимости от характера адсорбции и формы цепей в расплаве или растворе свойства поверх­ностных слоев будут различными.

Исследование релаксационных процессов в полимерах, нахо­дящихся на границе раздела с твердыми телами, представляет теоре­тический и практический интерес в связи с проблемой создания конструкционных наполненных полимерных материалов и нахож­дения оптимальных условий переработки и эксплуатации.

Установлено [18], что наличие границы раздела приводит к су­щественному изменению релаксационного поведения полимера в граничном слое, изменению температур стеклования н ширины интервала стеклования. изменению средних времен релаксации и пр. Это связано с изменениями плотности молекулярной упаков­ки, а также с уменьшением подвижности сегментов полимерных цепей и более крупных кинетических элементов вследствие их взаи­модействия с твердой поверхностью.

На основании данных авторы считают, что ограничения подвижности целей в граничных слоях связаны прежде всего с эн­тропийным фактором, т. е обеднением конформационного набора макромолекул вблизи границы раздела. Эго позволяет удовлетво­рительно объяснить независимость аффекта от химической природы поверхности, распространение изменения подвижности на слои, непосредственно не контактирующие с поверхностью. влияние на эти эффекты гибкости полимерной цепи. Действительно, конформационный набор молекул жесткоцепного полимера, который весьма ограничен по сравнению с гибкими молекулами, не может столь же сильно изменяться вблизи границы раздела вследствие жесткости цепей, как в случае гибких молекул. Здесь эффекты изменения подвижности цепей не проявляются.

Таким образом, можно заключить, что изменения молекулярной подвижности связаны с уменьшением гибкости цепи в граничном слое вследствие конформационных ограничений, накладываемых геометрией поверхности. При этом не имеет значения, вызвано ли изменение конформаций только наличи­ем поверхности или некоторой степенью связывания молекул по­верхностью Последний фактор, весьма существенный с точки зре­ния прочности адгезионной связи, не имеет существенного значения при уменьшении молекулярной подвижности, поскольку эти процессы не связаны с нарушением связей на границе раздела.

Следует отметить, что во всех приведенных примерах не рас­сматривались случаи сильных специфических взаимодействий на границе раздела, где, возможно, картина будет несколько отли­чаться от описанной.

С изложенной точки зрения представляется интересным оценить вклад энергетического и энтропийного фактора в изменение молекулярной подвижности вблизи границы раздела [35]. Это сделано на основании данных по энергиям активации релаксационных процессов в поверхностных слоях, полученных температурной зависимости средних времен релаксации (табл. 1).


где F - с

вободная энергия активации релаксационного процесса;

- время релаксации процессов;

0 - значение при 1/Т=0.

Из этого уравнения имеем:

или



где H - энтальпия активации при условии независимости 0 от Т. Отсюда







Таблица 1.

Значение активации и температурные смещения релаксационных процессов полимеров, находящихся в тонких слоях, определенных методом ЯМР и диэлектрическим методом

Содержание аэросила, %

Содержание фторпласта, %

Энергия активации релаксации, ккал/моль

Энергия активации диэлектрической релаксации, ккал/моль

ПММА

ПСТ

Сополимер ММА-СТ

ПММА

ПСТ

Сополимер ММА-СТ

Групповое движение

0

0

1,8

-

2,1

23,7

-

14,9

8,83

-

-

-

1,7

-

-

12,6

1,32

-

1,4

-

-

18,5

-

-

23,08

-

1,2

-

-

15,4

-

-

24,90

-

-

-

1,8

-

-

10,7

-

26,5

-

-

1,7

-

-

12,6

-

49,2

1,5

-

-

20,0

-

-

-

75,0

1,4

-

1,5

18,8

-

10,6

Сегментальное движение

0

0

14,5

11,3

13,3

-

90,0

99,0

8,83

-

-

-

12,0

-

-

-

1,32

-

9,8

-

-

-

60,9

-

23,08

-

9,2

12,3

-

-

57,1

-

24,90

-

-

-

11,5

-

-

85,5

-

26,5

-

-

12,0

-

-

89,5

-

49,2

11,0

-

-

-

69,2

-

-

75,0

10,1

13,1

11,4

-

63,2

84,6



Таким образом, экспериментальные зависимости дают возмож­ность определить термодинамические характеристики активационного процесса.

В поверхностных слоях по сравнению с объемом наблюдается заметное увеличение изменения энтропии активации в то время как энтальпия весьма незначительно уменьшается Эти результа­ты также показывают, что в изменение молекулярной подвижности цепей вблизи межфазовой границы основной вклад вносят конформационные эффекты.

Следует обратить внимание еще на одно обстоятельство. Изменение молекулярной подвижности в граничных условиях нельзя рассматривать как следствие адсорбционного взаимодействия, обусловленного только изменением теплосодержанием системы. В принципе одинаковые результаты можно получить для систем с сильным и слабым взаимодействием цепей с поверхностью, где все эффекты изменения молекулярной подвижности обусловлены энтропийными факторами. Соответственно, изменения подвижности не могут служить также характеристикой адгезии полимера к поверхности. Последующие исследования молекулярной подвижности в на­полненных системах подтвердили основные положения, развитые в работах [22, 23].





ИЗМЕНЕНИЕ СВОЙСТВ ГРАНИЧНЫХ СЛОЕВ КАК СЛЕДСТВИЕ УМЕНЬШЕНИЯ МОЛЕКУЛЯРНОЙ ПОДВИЖНОСТИ


Ограничение молекулярной подвижности вследствие адсорбци­онного взаимодействия ведет к существенным изменениям свойств поверхностных слоев полимеров. Они проявляются в плотности упаковки молекул в поверхностных слоях, в температурах стекло­вания и реликсационном поведении наполненных полимеров, а также в характере образующихся на поверхности надмолекулярных структур.


Плотности упаковки в граничных слоях


Исследования адсорбции паров полимерами позволяет рассчитать изменение термодинамических функций при сорбции. Расчет показывает, что это повышение не может быть обусловлено сорбцией паров на поверхности твер­дого тела, а вызвано только изменениями структуры. Если в качестве сорбента берется растворитель данного полимера, то можно рассчитать, пользуюсь обычными термодинамическими соотношениями, изменение парциальной свободной энергии при сорбции и при условии, что система является атермической, и изменение парциальной удельной энтропии полимера, находящегося в объеме и на поверхности.

Так, для сорбции паров этилбензола полистиролом, содержащим различное количество стекловолокна, найдено, что S2 повышается с увеличением содержания наполнителя в пленке полимера. В соответствии с классическими представления теории растворов, это означает, что молекулы полимера располагаются в наполненной системе большим числом способов, чем в объеме. Вместе с тем рост сорбции указывает на разрыхление молекулярной упаковки макро­молекул в граничных слоях.

С точки зрения теории растворов важной характеристикой свойств полимеров является их набухание. В соответствии с тео­рией Флори, набухание определяется числом узлов в пространст­венной сетке полимера и может быть использовано для их определения.

При изучении зависимости степени набухания от содержания полистирола на поверхности стекловолокна установлено [20], что по мере увеличения толщины слоя полимера на волокне проис­ходит закономерное снижение набухания, которое лишь при содержании полимера около 200% от веса волокна приближается к набуханию полимера в объеме. Эти данные не только подтверждают разрыхление упаковки молекул на поверхности, но и указывают на большое расстояние от поверхности, на котором еще сказывается ее влияние.

Рассматриваемый пример относился к отучаю отсутствия силь­ного взаимодействия полимера с поверхностью. Если таковое име­ет место, картина может быть существенно иной. Как показали исследования зависимости эффективной плотности пространственной сетки полиуретанов трехмерной структуры, нанесенных на подложку, от толщины покрытия, возникают дополнительные связи с поверхностью, приводящие к увеличению плотности сетки. По мере увеличения толщины слоя, эффект падает и на расстоянии от поверхности 200 мкм становится неразличимым. Следовательно, влияние поверхности в случае полимера сказывается на большом от нее удалении.

Таким образом, термодинамические исследования указывают на значительные различия в структуре и свойствах поверхностных слоев. Аналогичные результаты были получены впоследствии во многих работах.

Эффекты разрыхления можно объяснить следующим образом. Возникновение адсорбционных связей с поверхностью в ходе формирования полимерного материала, спо­собствуя дополнительному структурированию системы, заметно ограничивает подвижность полимерных цепей вблизи поверхности, что приводит к изменению условий протекания релаксационных процессов и замедлению установления равновесного состояния полимера вблизи поверхности, а следовательно делает невозможным появление плотноупакованной структуры в таких условиях. Влияние условий протекания релаксационных процессов на плотность упаковки полимеров показано в работе [21].

Одновременно, что на поверхности происходит частично и сам процесс формирования надмолекулярных структур.

Можно допустить, что по тем же причинам агрегаты молекул или дру­гие надмолекулярные структуры будут менее плотноупакованными. Чем больше поверхность наполнителя, тем больше ограничивается подвижность цепей уже в ходе формирования поверхностного слоя, и тем рыхлее упаковка в нем макромолекул. Посте заверше­ния процесса формировании материала, когда агрегаты и молекулы более рыхлоупакованные, связаны с поверхностью, основное влияние на свойства имеет уже ограничение подвижности молекул. входящих в поверхностный слой.


Температуры стеклования граничных слоев

Как известно, переход из высокоэластического в стеклообраз­ное состояние является кооперативным процессом, и поэтому вели­чина скачка теплоемкости при стекловании зависит, очевидно, от числа молекул или сегментов, принимающих участие в переходе. Так как стеклование связано с проявлением подвижности макро­молекул, то понижение скачка теплоемкости при стекловании может быть однозначно связано с исключением некоторой части макромо­лекул из участия в процессе. Экспериментальные данные подтверждают это положение: во всех случаях с ростом содержания твердой фазы скачок теплоемкости уменьшается. Это дает возможность по­дойти к оценке доли полимера, находящегося в граничных слоях. Если предположить, что макромолекулы, находящиеся в гранич­ных слоях вблизи поверхности, не участвуют в общем процессе, то доля «исключенных» макромолекул составляет


= (1-f) = 1 - C/Ca,


где Ca, C - значение скачка теплоемкости для ненаполненного и наполненного образцов соответственно. Отсюда можно опреде­лить толщину граничного слоя следующим образом. Если упрощен­но представить частицы наполнителя в виде сфер радиуса r, a толщину адсорбционного слоя обозначить через r, то объем адсорб­ционного слоя вокруг частички наполнителя будет описываться уравнением:


V = 4[(2+r)3 - r3]/3


С другой стороны, объемную дано граничных макромолекул можно представить как (1-f)c, где f - доля несвязанных макромолекул; с - общая объемная доля полимера в системе. Прирав­нивая отношение объема адсорбированного слоя вокруг частицы к ее объему и отношение общей объемной доли граничных макромо­лекул к объемной доле наполнителя в системе, можно написать:




Если взять экспериментальное значение для системы олигоэтиленгликольадипинат - азросил (1-f) 1 и с = 0,975, то r/r 0,8. Так как частицы аэросила имеют диаметр около 250 А, то дм данной системы толщина слоя равна 100 А. Аналогичные ве­личины порядка 170 А получены для наполненных сажей ли­нейных полиуретанов.

Итак, абсолютное значение теплоемкости полимерной фазы в наполненных системах ниже, чем в ненаполненных, что интер­претируется как следствие понижения химического потенциала макромолекул в граничных областях по сравнению с химическим потенциалом в объеме. Таким образом, термодинамические данные указывают на определенные структурные изменения в граничных слоях полимеров на твердой поверхности.

Как уже было сказано - толщина граничного стоя зависят от свойств твердой поверхности и характеристик полимерной фа­зы. Влияние химической природы полимера на изменение свойств граничных слоев очень существенно. Рассмотрим некоторые лите­ратурные данные, полученные при измерении теплоемкости (табл. 2). Как видно из табл. 2 при увеличении в полимерах содержания аэросила во всех случаях происходит более или ме­нее резкое понижение величины скачка теплоемкости Ср при температуре стеклования. Это указывает на переход некоторой части макромолекул из объема в граничные слои вблизи твердой поверхности. В табл. 2 приведены значения доли полимера в граничном слое, найденной из зависимости, учитывающей вели­чину скачка теплоемкости при стекловании для наполненного и ненаполненного образцов. Значение увеличивается с повышени­ем содержания наполнителя в системе (хотя пропорциональности при этом не наблюдается), и величина стремится к некоторому пределу.


Таблица 2.

Параметры стеклования в наполненных полимерах

Содержание аэросила, вес.%

Тс, 0С

Ср, кал/моль

Ес, кал/моль

с, см3/моль

h, кал/моль

Vh, см3/моль

Полистирол

0

95

6,25

-

7320

100,5

1230

16,9

1

95

5,60

0,105

-

-

1375

18,9

5

95

4,55

0,270

-

-

1705

23,5

10

95

3,10

0,505

-

-

160

29,7

15

95

3,00

0,520

-

-

2190

30,1

Полиметилметакрилат

0

105

10,00

-

11380

85,9

1180

8,9

1

110

9,80

0,020

-

-

1215

9,2

5

118

9,00

0,100

-

-

1350

10,2

7

121

8,40

0,160

-

-

1455

11,0

10

123

8,10

0,190

-

-

1530

11,5

Полиуретаны

0

-34

19,60

-

16380

143,0

895

7,8

1

-33

17,20

0,120

-

-

1020

8,9

5

-32

15,80

0,195

-

-

1115

9,7

10

-30

14,60

0,255

-

-

1170

10,2

20

-30

14,20

0,275

-

-

1200

10,5

Полиметилсилоксан

0

-125

7,20

-

4985

65,0

695

9,0

10

-124

6,50

0,095

-

-

755

9,8

30

-123

5,82

0,190

-

-

805

10,5

50

-123

5,33

0,260

-

-

845

10,9


Vc - мольный объем полимера при Тс.


С точки зрения теоретических представлений об адсорбции интересно отметить результаты, полученные при исследова­нии температур стеклования пластифицированных наполненных полимеров [19, 22]. Найдено, что при одном и том же содержании пластификатора более резко снижается температура стекло­вания наполненного полимера по сравнению с ненаполнным. При повышении содержания пластификатора выше определенного предела температура стеклования наполненных пленок становится ниже, чем ненаполненных. Эти данные указывают на конкуренцию за места на поверхности между полимером и пластификатором, а также на вытеснение полимера с поверхности молекулами пластификатора, что соответствует представлениям об адсорбции смесей полимеров. Отметим также, что в работах Ю. С. Липатова и Т. Э. Гел­лер [18,19] на примере исследования объемной релаксации в на


Случайные файлы

Файл
62417.rtf
diplom.doc
70144.rtf
157619.rtf
111939.rtf