Логические методы познания (9829-1)

Посмотреть архив целиком

Логические методы познания

Анализ и синтез

Логические методы познания особенно необходимы при отыскании решения задач. Рассмотрим, например, следующую задачу: "Определить площадь четырехугольника, диагонали которого взаимно перпендикулярны и равны 6 и 8 см". Поиск ее решения целесообразно начать, пользуясь методами анализа и синтеза. В процессе анализа задачи выделяются все ее утверждения: 1) необходимо вычислить площадь четырехугольника; 2) четырехугольник имеет взаимно перпендикулярные диагонали; 3) диагонали четырехугольника равны 6 и 8 см. Выделение этих утверждений из "целого" (задачи) - результат проведения анализа. Анализ направляется вопросами: "Что дано в задаче?", "Что еще дано в задаче?", "О чем еще говорится в задаче?", "Что в задаче требуется найти?". Важно иметь в виду, что при решении задачи анализ проводится не один раз: возможен повторный анализ, анализ с новой целью, с иной точки зрения и т. п. Так, для выполнения чертежа необходим дополнительный анализ, устанавливающий порядок использования данных задачи для построения чертежа. Выполнение чертежа предполагает уже другой метод познания - метод синтеза. Ошибки в выполнении чертежа являются поводом для проведения анализа с более конкретной целью, т. е. более углубленного анализа. Например, при решении рассматриваемой задачи учащиеся иногда четырехугольник изображают в виде параллелограмма. Избежать ошибки в выполнении чертежа можно, если начать построения не с четырехугольника, а с его диагоналей, изображая их произвольными взаимно перпендикулярными отрезками. В итоге дополнительного анализа на первый план выдвигается условие перпендикулярности диагоналей, которое является основным в отыскании общей идеи решения задачи, необходимых вычислений. Возможны различные решения задачи (в зависимости от того, в каком направлении будет вестись анализ, на какие треугольники будет разбит данный четырехугольник). Например, нетрудно заметить, что данный четырехугольник состоит из четырех (или двух) треугольников и задача тем самым сводится к нахождению суммы площадей этих треугольников.

Анализ - логический прием, метод исследования, состоящий в том, что изучаемый объект мысленно (или практически ) расчленяется на составные элементы (признаки, свойства, отношения), каждый из которых исследуется в отдельности как часть расчлененного целого.

Синтез - логический прием, с помощью которого отдельные элементы соединяются в целое.

Очень часто умение мыслить связывают с умением анализировать. Это вполне правомерно, так как вывод следствий, выражающих новые свойства изучаемого объекта, очень часто требует анализа того, что уже известно о нем. В математике, чаще всего, под анализом понимают рассуждение в "обратном направлении", т. е. от неизвестного, от того, что необходимо найти, к известному, к тому, что уже найдено или дано, от того, что необходимо доказать, к тому, что уже доказано или принято за истинное. В таком понимании, наиболее важном для обучения, анализ является средством поиска решения, доказательства, хотя в большинстве случаев сам по себе решением, доказательством еще не является.

Синтез, опираясь на данные, полученные в ходе анализа, дает решение задачи или доказательство теоремы. Анализ лежит в основе весьма общего подхода к решению задач (имеется в виду нестандартных задач, для которых нет соответствующего алгоритма), известного под названием сведения (редукции) задачи к совокупности подзадач. Идея такого подхода состоит именно в свойственном для анализа "размышлении в обратном направлении" от задачи, которую предстоит решить, к подзадачам, затем от этих подзадач к подподзадачам и т. д., пока исходная задача не будет сведена к набору элементарных задач. Что же понимают под "элементарными задачами"? Это, во-первых, задачи, решаемые за один шаг поиска, во-вторых, более сложные задачи (т. е. не решаемые за один шаг поиска), решение которых уже известно из имеющегося опыта решения задач.

Из такого понимания элементарной задачи следует, что чем больший опыт решения задач, тем больше задач становятся для нас "элементарными" в упомянутом выше смысле, а следовательно, тем меньше объем поиска при решении новых задач, их сведения к элементарным, так как цель поиска состоит в получении элементарных задач, останавливающих процесс поиска.

Подход к решению задач, состоящий в сведении задач к совокупности подзадач, находит широкое применение в практике решения не только задач на доказательство.

Приведем в качестве примера арифметическую задачу для IV класса: "В двух бригадах совхоза участки под зерновые составляли 2000 га и 3000 га соответственно. Первая бригада собрала по 30 ц, вторая по 26 ц с гектара. Продано государству 5500 т с первого участка и 7000 т со второго. Остальное зерно засыпано в семенной фонд. Сколько зерна засыпал совхоз в семенной фонд?"

Обычно анализ задачи по существу представляет собой процесс сведения данной задачи к совокупности подзадач, доведенный до элементарных задач. Здесь элементарной считается задача, решаемая с помощью не более одного действия над данными задачи (т. е. элементарной считается и задача, решение которой находится среди данных, например: "Сколько зерна продано государству с первого участка?").

Возможен и иной путь поиска. Построение самого процесса решения (синтез) осуществляется последовательным решением подзадач в обратном порядке.

Наряду с анализом и синтезом в обучении математике часто используются аналогия, обобщение и конкретизация.

Принцип сознательности обучения ориентирует учащихся на осознание путей получения новых знаний. Это осознание формируется на основе практики целенаправленного применения методов научного познания. Полезным является также краткий методологический комментарий процесса поиска решения математических задач.

Сравнение и аналогия

Сравнение и аналогия-логические приемы мышления, используемые как в научных исследованиях, так и в обучении.

С помощью сравнения выявляется сходство и различие сравниваемых предметов, т. е. наличие у них общих и необщих (различных) свойств.

Например, сравнение треугольника и четырехугольника раскрывает их общие свойства: наличие сторон, вершин, углов, столько же вершин и углов, сколько сторон, а также различие: у треугольника три вершины (стороны), у четырехугольника - четыре. Сравнение параллелограмма и трапеции позволяет выявить их общие свойства: они оба четырехугольники, оба имеют параллельные стороны, - и различие: в одном - две пары параллельных сторон, в другом - одна. Сравнение обыкновенных и алгебраических дробей выявляет их сходство: наличие числителя и знаменателя, отсутствие значения, когда знаменатель обращается в нуль, и т.д., - и различие: в одном случае числитель и знаменатель - числа, в другом - алгебраические выражения.

Сравнение приводит к правильному выводу, если выполняются следующие условия:

1) сравниваемые понятия однородны и 2) сравнение осуществляется по таким признакам, которые имеют существенное значение.

Эти два условия выполняются в приведенных выше сравнениях: треугольник и четырехугольник - однородные понятия (многоугольники), параллелограмм и трапеция - четырехугольники, обыкновенные и алгебраические дроби - выражения. Во всех трех случаях сравнение осуществлено по существенным признакам (если, например, включили бы в общие свойства параллелограмма и трапеции тот факт, что они оба обозначены одними и теми же буквами АВСД, или считали бы различием обозначение их различными буквами, то это было бы ошибочным подходом к сравнению). Сравнение подготавливает почву для применения аналогии. С помощью аналогии сходство предметов, выявленное в результате их сравнения, распространяется на новое свойство (или новые свойства).

Рассуждение по аналогии имеет следующую общую схему:

А обладает свойствами А, В, С, Д,

В обладает свойствами А, В, С,

Вероятно (возможно) В обладает и свойством Д.

Как видим, заключение по аналогии является лишь вероятным (правдоподобным), а не достоверным. Поэтому аналогия, как правило, не является доказательным рассуждением, т. е. рассуждением, которое может служить доказательством. ("Как правило" потому, что имеется исключение, связанное с особым видом аналогии, о котором речь пойдет дальше.) Однако в обучении, как, впрочем, и в науке, аналогия часто полезна тем, что она наводит нас на догадки, т. е. служит эвристическим методом. В обучении же математике не менее важно, чем учить доказывать, это учить догадываться, что именно подлежит доказательству и как найти это доказательство.

В приведенном выше разъяснении того, что такое аналогия, используется понятие "сходство", которое само нуждается в разъяснении. Когда говорят, например, о сходстве между людьми, между человеком и его изображением на фотоснимке или картине и т. п., интуитивно понимают, что означает сходство. Но можно ли в таком же смысле говорить, например, о сходстве между множеством учащихся класса и множеством А = {1,2,3, ..., 30}, или между множеством точек прямой и множеством действительных чисел, или между множеством объектов на некотором участке и планом этого участка? Применение же аналогии в математическом исследовании, а поэтому и в обучении математике, часто характеризуется именно тем, что оно основано на глубоком, внутреннем "сходстве", а по существу на одинаковости структуры множеств предметов различной природы с отношениями, имеющими совершенно различный смысл, при отсутствии всякого внешнего "сходства" (в обычном смысле) между этими множествами. Это "структурное сходство", получившее точное математическое описание с помощью понятия изоморфизма, лежит в основе особого вида аналогии, приводящей в отличие от обычной аналогии к достоверным заключениям.


Случайные файлы

Файл
38526.rtf
22398-1.rtf
130608.rtf
57137.rtf
22973-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.