Движение в пространстве, пространство движения и геометрический образ движения: опыт топологического подхода (72250-1)

Посмотреть архив целиком

Движение в пространстве, пространство движения и геометрический образ движения: опыт топологического подхода

Аспирант О.С. Васильев, доктор педагогических наук Н.Г. Сучилин, Российский государственный университет физической культуры, спорта и туризма, Москва

гимнастика, этот прекрасный и странный вид спорта, сделавший своим предметом движения, не известные в повседневном, "разумном" обиходе

<…>

подобно тому, как музыка слагается из звуков, не известных живой природе…

Ю.К. Гавердовский [18]

Введение. Методология науки и ее предмет в прошлом веке претерпели существенные изменения. Согласно известному изречению W. Weaver (1948), классическая наука имела дело либо с организованной простотой, либо с неорганизованной сложностью, тогда как предметом современной науки является организованная сложность. Как следствие этого господствующая в классической науке парадигма Декарта и Галилея, требующая расчленения проблемы на возможно большее число элементарных составных частей и изучения каждой из них в отдельности, была элиминирована системным подходом, где в качестве основного методологического принципа выступает принцип целостности.

Современный постнеклассический этап развития научной мысли характеризуется становлением новой мировоззренческой парадигмы: на смену идеям борьбы противоположностей выступают интегративные концепции и принципы взаимодополнения; на смену аристотелевой логике - системы многозначной и нечеткой логики. Одним из первых отсутствие причинно-следственной детерминированности окружающего нас мира осознал Ангелиус Силезиус (1624-1677): "Роза есть без "почему"; она цветет потому, что она цветет, не обращая на себя внимания, не спрашивая, видят ли ее".

От принципов однозначности и детерминизма классического мировоззрения (классическая механика) современная научная мысль подошла к многозначности; от измеримости к неизмеримости и несоизмеримости, к рассмотрению открытых динамических систем, неустойчивых и переходных процессов, явлений самоорганизации, хаоса, флуктуации, бифуркации и неустойчивости. Предложенный Н. Бором (1927) принцип дополнительности о применении на определенном этапе познания взаимоисключающих понятий и представлений давно вышел за рамки квантомеханических представлений. Необходимость взаимосвязи и единого рассмотрения объекта, субъекта и средства познания также преодолевает рамки квантомеханических подходов. Принцип неопределенности В. Гейзенберга (1927) фактически ознаменовал переход от классического лапласовского механистического детерминизма к динамическому вероятностному детерминизму и индетерминизму. Мир стал видеться не как скопление объектов, а как система сложных системных взаимоотношений частей и единого целого. Последние достижения в системном анализе, опирающиеся на теорему К. Геделя о неполноте (1931), показывают невозможность выбора наилучшей системы, структуры, конструктивного пространства для непротиворечивого описания поведения сложного объекта, каким является движение человеческого тела.

Говорить о подчинении природы известным на современном этапе развития научной мысли законам физики уже не приходится - слишком много (и часто взаимоисключающих) моделей описания окружающего нас мира предлагает современная наука. Тем не менее современная наука строится на гипотезе о наличии внутренней упорядоченности и закономерностей в явлениях природы, к которым и относится движение человека. Поиск этой внутренней упорядоченности природы и является одной из основных целей современной науки.

Разрозненные эмпирические геометрические представления древности постепенно оформились в стройные физико-математические теории, но фундаментальный вопрос о взаимосвязи идеального и материального до сих пор остался без ответа. Чему присущи геометрические структуры: природе или нашим представлениям о ней, самому движению в пространстве или геометрическому образу этого движения? Уверенность в том, что геометрия внутренне присуща природе, а не нашим представлениям о ней, берет начало в греческой философии. С тех пор на протяжении веков окружающее нас пространство рассматривалось как абстрактно-геометрическое.

В новое время с позиций классической физики наше пространство рассматривалось как трехмерное, однородное и изотропное, не зависящее от находящихся в нем материальных тел и подчиняющееся евклидовой геометрии. А время - как однородное и одномерное, то есть как независимое измерение. Такое пространство И. Кант рассматривал как эмпирическую реальность, априорную по отношению к опыту. Пространство у Канта не есть внешний объект чувств: время не есть внутренний, в котором мы воспринимаем вещи и их действия, но формы нашей способности действовать.

Но уже И. Ньютон подразумевал два вида пространства: относительное, с которым люди встречаются путем измерения пространственных соотношений между телами, и абсолютное - пустое вместилище тел, трехмерное евклидово пространство, то есть фактически различал пространство движения и движение в пространстве.

В механике Ньютона на свойства пространства никак не влияло происходящее в нем движение материи; "геометрия" и "динамика" в ньютоновской механике были независимы друг от друга. Глубочайшая идея взаимосвязи и взаимообусловленности движения и пространства принадлежит А. Пуанкаре.

Пространство в релятивистской физике и физике микромира имеет более сложную геометрию, более сложное строение. На смену трехмерному евклидову пространству классической физики пришел четырехмерный континуум пространство-время Германа Минковского: пространство само по себе, как и время само по себе, отошли в прошлое, независимой действительностью является только их единство. Основным открытием теории относительности является, по мнению Генри Маргенау (H. Margenau) то, что геометрия есть продукт деятельности интеллекта. Такому пространству соответствуют построения философа экзистенциальной онтологии М. Хайдеггера, который рассматривал пространство не само по себе, а как производное от бытия.

С позиций современной математики пространство представляет собой логически мыслимую форму или структуру, в которой осуществляются другие формы и те или иные конструкции . В этом смысле различные виды геометрий имеют равные права на существование. Но по отношению к реальному окружающему нас пространству наиболее адекватной оказывается не евклидова, а риманова геометрия. Но так как любое ускоренное движение "нарушает" евклидовость пространства, то можно заключить, что большинство движений в спортивной гимнастике происходит в неевклидовом пространстве.

В современной физике свойства пространства делят на метрические (протяженность и длительность) и топологические (размерность, непрерывность, связность и др.). Топология - это раздел математики, рассматривающий наиболее общие свойства формы объектов, сохраняющиеся при непрерывной деформации. Топология изучает свойства геометрических фигур, "сохраняющихся даже тогда, когда эти фигуры подвергаются таким преобразованиям, которые уничтожают все их и метрические, и проективные свойства", - писали Р. Курант и Г. Роббинс [32]. Если метрические свойства окружающего нас пространства достаточно полно рассмотрены в общей и специальной теории относительности, то исследование топологических свойств окружающего нас пространства пока остается на уровне гипотез.

В микромире привычные представления о пространстве-времени оказываются неадекватными (например, понятие траектории частицы). Возможно, привычные представления об окружающем нас пространстве-времени изменятся в недалеком будущем.

Несмотря на значительные успехи современной научной мысли единого понимания пространства ни философия, ни физика до сих пор не достигли; на сегодняшний день мы имеем лишь разные модели пространства.

Современная биомеханика от аналитической до антропоцентрической основывается на метрических свойствах пространства. Топологические свойства пространства движения - обобщенная форма траектории, связность и др. - являются предметом рассмотрения топологической биомеханики, математический аппарат которой настолько сложен, что … до сих пор еще не разработан. Ведь даже классическая задача "трех тел" не имеет аналитического решения. В какой-то степени к пониманию топологических концепций движения подошли механика сплошной среды и дифференциальная геометрия.

Современные компьютерные технологии позволяют визуализировать сложнейшие абстрактные геометрические объекты и пространственные взаимодействия. Однако визуализировать математические построения можно и не только посредством вычислительной техники. При выполнении двигательных задач в сложнокоординированных видах спорта, и прежде всего в гимнастике, спортсмен решает биомеханические проблемы такой сложности, которые пока недоступны современной аналитической науке. Выполнение гимнастической комбинации является, по сути дела, визуализацией решения такой двигательной задачи, которая не по силам современной вычислительной технике. А ведь еще Карл Фридрих Гаусс ставил вопрос об экспериментальной проверке положений геометрии. А если, по мнению В.И. Арнольда [4], "математика - это часть физики, являющаяся, как и физика, экспериментальной наукой", то можно предположить, что современная спортивная гимнастика как вид визуализации сложных движений в пространстве в недалеком будущем станет разделом экспериментальной геометрии.

История развития концепций пространства движения человеческого тела


Случайные файлы

Файл
71113-1.rtf
101270.rtf
151456.rtf
24932-1.rtf
143468.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.