Коэффициент гидравлического трения (151702)

Посмотреть архив целиком

Определение коэффициента гидравлического трения


В уравнении Бернулли, записанном для двух сечений потока вязкой жидкости (обозначения общепринятые):


(1)


где представляет собой суммарную величину потерянного напора:


, (2)


где – потери напора по длине расчетного участка трубопровода, вызванные трением жидкости о стенки, называются путевыми потерями;

потери напора на коротких участках трубопровода, обусловленные изменением формы или размеров (иногда и того и другого одновременно), называемые потерями в местных сопротивлениях, или местными потерями напора.

В данной работе рассматриваются путевые потери. Согласно уравнению неразрывности для потока вязкой несжимаемой жидкости (ρ = const):


(3)


При течении жидкости в горизонтально расположенном трубопроводе (z1=z2) постоянного сечения (S1=S2) скорость в начале и конце расчетного участка будет одинаковыми (V1=V2) и уравнение Бернулли примет вид:


(4)


Путевые потери определяются по формуле Дарси – Вейсбаха:


, (5)


где λ – безразмерный коэффициент гидравлического трения (коэффициент Дарси);

L – длина расчетного участка трубопровода;

d – диаметр трубопровода;

 – средняя скорость потока.

Экспериментально установлено, что коэффициент гидравлического трения в общем случае зависит от режима течения, характеризуемого числом Рейнольдса (Re), и состояния внутренней поверхности трубопровода, характеризуемой относительной шероховатостью (ε). Влияние этих факторов на величину λ при ламинарном и турбулентном режимах течения проявляется по-разному.

При ламинарном режиме, т.е. – кинематический коэффициент вязкости) состояние поверхности стенки не влияет на сопротивление движению жидкости и λ = f (Re). Значение коэффициента λ в этом случае определяется по теоретической формуле Пуазейля:


(6)


Подставляя это выражение в (5), получим формулу для определения путевых потерь при ламинарном течении в виде:


, (7)


где

Из (7) следует, что в ламинарном потоке потери напора по длине трубопровода (путевые потери) прямо пропорциональны средней скорости течения жидкости.

Турбулентный режим течения характеризуется интенсивным перемешиванием жидкости как в поперечном (по сечению потока), так и в продольном (по длине потока) направлениях. Однако в диапазоне чисел Рейнольдса непосредственно вблизи стенок трубопровода существует слой движущейся жидкости, течение в котором сохраняется ламинарным. Этот слой называется ламинарным подслоем или ламинарной пленкой. Толщина ламинарной пленки (δЛ) зависит от режима течения δЛ = f (Re) и с увеличением числа Рейнольдса δЛ уменьшается.

Стенки любого тракта имеют естественную шероховатость поверхности, первоначально обусловленную материалом и технологией изготовления трубопровода и меняющуюся при его эксплуатации вследствие взаимодействия материала трубопровода с рабочей жидкостью. Средняя высота выступов шероховатости (Δ) называется абсолютной шероховатостью. В зависимости от соотношения между δЛ и Δ (см. рис 1) трубы или стенки рассматривают как гидравлически гладкие или гидравлически шероховатые.


Рис. 1


Если δЛ > Δ, ламинарный подслой как бы сглаживает шероховатость стенки: поток не получает дополнительной турбулизации от шероховатости, поскольку образующиеся на вершинах выступов шероховатости вихри подавляются ламинарной пленкой. Труба, в которой выступы шероховатости находятся в пределах толщины ламинарного подслоя, называется гидравлически гладкой.

Если δЛ < Δ, выступы шероховатости, оказавшись в турбулентном ядре потока, вносят дополнительное возмущение в обтекающую их жидкость, что приводит к увеличению сопротивления и, следовательно, потерь напора. Такая труба является гидравлически шероховатой.

В зависимости от режима течения, одна и та же труба может быть как гидравлически гладкой, так и гидравлически шероховатой, поскольку с ростом числа Рейнольдса толщина ламинарного подслоя уменьшается, и, наоборот – с увеличением Re, δЛ возрастает.

Естественная шероховатость всегда неравномерна, так как выступы имеют различные формы, размеры и расположения. Поэтому вводится понятие эквивалентной (или равномерно-зернистой) абсолютной шероховатости ΔЭ. Эта искусственно создаваемая шероховатость, например, путем наклеивания на стенки трубы песчинок одного размера (одной фракции) и на одинаковых расстояниях друг от друга, обеспечивает создание сопротивления трубопровода, равного сопротивления при естественной шероховатости.

Значения абсолютной (Δ) и эквивалентной (ΔЭ) шероховатости для труб из некоторых материалов приведены в таблице 1.


Таблица 1.

п/п

Материал и состояние труб

Δ,

мм

ΔЭ,

мм

1

Трубы из стекла, латуни или медные, новые

0,0015…0,01

0,001…0,01

2

Трубы стальные, бесшовные (цельнопотянутые), новые, чистые

0,02…0,1

0,02…0,5

3

Трубы стальные, сварные, новые, чистые

0,03…0,12

0,03…0,1

4

Трубы стальные, бывшие в употреблении

0,2…1,2

0,2…1,25

5

Трубы чугунные, новые

0,25…1,0

0,2…0,5

6

Трубы чугунные, бывшие в употреблении

0,5…1,4

0,5…1,5


При определении λ учитывается не абсолютная шероховатость, а ее отношение к диаметру (или радиусу) трубы, т.е. относительная шероховатость:


;


Это обусловлено тем, что одна и та же абсолютная шероховатость оказывает большее влияние на сопротивление движению в трубопроводе меньшего диаметра.

Предложено большое количество эмпирических и полуэмпирических формул для определения коэффициента гидравлического трения λ, учитывающих особенности течения при турбулентном режиме. Эти особенности в конечном итоге сказываются на зависимости путевых потерь от средней скорости течения.

Так, для гидравлически гладких труб потери напора по длине пропорциональны средней скорости в степени 1,75. В переходной области от гидравлически гладких к шероховатым трубам () на величину λ оказывают влияние одновременно два фактора: число Рейнольдса и относительная шероховатость, т.е. в переходной области λ = f (Re, ε). В этой области, называемой зоной доквадратного сопротивления, потери напора по длине пропорциональны средней скорости в степени 1,74…2.

Для гидравлически шероховатых труб, когда ламинарная пленка практически полностью разрушается, коэффициент λ уже не зависит от Re, а определяется лишь относительной шероховатостью, т.е. λ = f (ε). Эта область называется зоной квадратичного сопротивления, т. к. h  2, или автомодельной областью, так как независимость λ от Re означает, что потери напора по длине, определяемые по формуле (5) пропорциональны квадрату средней скорости. Начало этой области определяется условием .

Наиболее часто применяемые формулы для вычисления значения коэффициента λ приведены в таблице 2.

Определение λ по приведенным в таблице 2 и другим формулам облегчается использованием таблиц и номограмм, содержащихся в учебных и справочных пособиях.

При проведении данной работы рассматриваются режимы течения в гидравлически гладких трубах.


Таблица 2

Зона сопротивления, режим

Границы зоны

Расчетные формулы

Зависимость потерь напора от скорости

1. Ламинарный

;

ф. Пуазейля

h  

2. Зона гладкостенного сопротивления

;

ф. Блазиуса

h  1,75

ф. Конакова


3. Зона доквадратичного сопротивления

ф. Кольбрука Уайта

h  1,75  2

ф. Альтшуля


4. Зона квадратичного сопротивления

ф. Прандтля-Никурадзе

h  2

ф. Шифринсона



Описание установки.

Принципиальная схема экспериментальной установки, используемой для определения коэффициента гидравлического трения λ приведена на рис. 2.


Случайные файлы

Файл
29943.rtf
60204.rtf
96511.rtf
159032.rtf
180657.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.