Ідеальна оптична система (151646)

Посмотреть архив целиком












ІДЕАЛЬНА ОПТИЧНА СИСТЕМА






1. Поняття про ідеальну оптичну систему. Кардинальні елементи


Під ідеальною оптичною системою розуміють таку систему, що будь-яку точку простору предметів зображує стигматично, тобто вона не порушує гомоцентричності широких пучків променів, що проходять крізь неї, у межах великої області простору. Теорія ідеальної оптичної системи має чисто геометричний характер. Вона є окремим випадком більш загальної геометричної задачі про перетворення одного простору в інший, котрий називають колінеарним перетворенням. Кожній безлічі точок одного простору відповідає безліч точок в іншому просторі, яке можна назвати зображенням першого. В основі колінеарної відповідності лежать такі розуміння:

- кожній точці простору предметів відповідає тільки одна точка в просторі зображень; ці дві точки є сполученими;

- будь-якій прямій лінії простору предметів відповідає тільки одна сполучена з нею пряма лінія у просторі зображень.

Таким чином, будь-якій площині простору предметів відповідає тільки одна сполучена площина в просторі зображень. У сполучених площинах, що перпендикулярні оптичній осі, зберігається строга подоба.

Виберемо в предметній площині Q, перпендикулярної до осі, предмет у вигляді лінійного відрізка у (рис. 1). Зображенням цього предмета буде відповідний відрізок у'. Відношення розміру зображення до розміру предмета називають лінійним збільшенням ідеальної системи:


 = уу.(1)


Для даної пари сполучених площин Q, Q', перпендикулярних до оптичної осі, лінійне збільшення є постійним і не залежить від розміру предмета. Для іншої пари сполучених площин лінійне збільшення матиме інше значення. Якщо  < 0, то зображення стосовно предмета буде переверненим, при  > 0 - зображення пряме. Лінійне збільшення визначає масштаб зображення. Теорія ідеальної центрованої оптичної системи була розроблена Гаусом, тому її часто називають оптикою Гауса.


Рисунок 1- До знаходження лінійного збільшення оптичної системи

Рисунок 2- Кардинальні точки оптичної системи


Перейдемо до визначення понять кардинальних (основних) елементів ідеальної оптичної системи. Для цього представимо оптичну систему, що складається з ряду поверхонь, у якій l і k (рис. 2) є першою й останньою поверхнями, і розглянемо три характерних положення предметної точки і її зображення.

1. Світна точка А знаходиться на оптичній осі в нескінченності. Її зображення буде в точці F', що називають заднім фокусом оптичної системи. Площина, що проходить крізь задній фокус і перпендикулярна оптичній осі, називається задньою фокальною площиною оптичної системи. Ця площина є зображенням нескінченно вилученої площини. Пучок променів, що виходить з нескінченно вилученої точки на оптичній осі, приходить в оптичну систему у вигляді пучка, рівнобіжного оптичній осі. Отже, задній фокус володіє тою властивістю, що крізь нього проходить усякий промінь, що входить в оптичну систему паралельно оптичній осі. Якщо предметна точка В (рис. 3, а), вилучена в нескінченність, знаходиться поза оптичною віссю, то промені, що виходять з цієї точки, утворять похилий пучок рівнобіжних променів. Цей пучок по виходу з оптичної системи збирається в сполученій точці В', що знаходиться поза оптичною віссю, у задній фокальній площині QF.

2. При переміщенні предметної точки А праворуч точка А' (див. рис. 2) переміщатиметься також праворуч і видалиться в нескінченність. У цьому випадку точка А переміститься в точку F. Точку F на оптичній осі в просторі предметів, сполучений з нескінченно вилученою точкою оптичної осі в просторі зображень, називають переднім фокусом оптичної системи. Площина QF, що перпендикулярна оптичній oci і минаює через передній фокус, називають передньою фокальною площиною. Передня фокальна площина сполучена з нескінченно вилученою площиною простору зображень. Отже, пучок променів, що виходить з будь-якої точки В передньої фокальної площини Qp (крім переднього фокуса), виходить із системи похилим пучком рівнобіжних променів (рис. 4, б). Усякий промінь, що входить в оптичну систему через передній фокус, виходить із системи паралельно її оптичної осі.


Рисунок 2- Схема для знаходження властивостей фокальних площин


3. Виберемо пари сполучених і перпендикулярних оптичній осі площини, у яких лінійне збільшення дорівнює плюс одиниці (див. рис. 2). Ці площини називають передньою і задньою головними площинами. Точки їхнього перетинання з оптичною віссю називають передньою Н і задньою Н' головними точками. Тому, що лінійне збільшення в головних площинах дорівнює +1, то будь-який відрізок в одній площині зображується рівним і однаково розташованим відрізком в іншій площині. Звідси випливає, що вхідний і вихідний промені перетинають відповідні головні площини на рівних висотах h.

Відстань HF від передньої головної точки Н до переднього фокуса F є передньою фокусною відстанню оптичної системи, а відстань H'F' від задньої головної точки Н' до заднього фокуса F' - задньою фокусною відстанню. Фокусні відстані позначають відповідно f і f. Їх відраховують від головних точок.

Якщо оптична система знаходиться в однорідному середовищі, наприклад у повітрі (n = n' = 1), то f' = -f, тобто заднє і переднє фокусні відстані рівні за абсолютним значенням. У загальному випадку при n'  n


-f/f = n/n'.(2)


Оскільки n > 0 і n' > 0, тo фокусні відстані оптичної системи завжди мають різні знаки. Як правило, для характеристики оптичної системи використовують задню фокусну відстань, тому, якщо f' > 0, то система вважається позитивною, якщо f < 0, то - негативною. У негативних системах задній фокус знаходиться перед оптичною системою.


Рисунок 3- Схема для знаходження фокусних відстаней: а)- заднього, б)- переднього


Фокуси, фокальні площини, головні площини, головні точки і фокусні відстані називають кардинальними елементами оптичної системи.

Положення фокусів і головних площин визначають шляхом розрахунку чи графічної побудови ходу променів, паралельних оптичній осі, у прямому і зворотному напрямках (рис. 4). Як випливає з рис. 4, при висоті h падіння променів у прямому і зворотному ході одержуємо такі формули для визначення фокусних відстаней:


f' = h/tgk;

f = h/tg.


2. Залежності між положеннями і розмірами предмета і зображення. Кутове і подовжене збільшення


Уведення кардинальних елементів дозволяє легко визначити положення і розмір зображення графічним способом. Для цього необхідно побудувати хід двох променів, що виходять з однієї позавісьової точки В предмета АВ (рис. 5). Проведемо один промінь паралельно оптичній осі, а інший - крізь передній фокус F. На перетинанні цих променів у просторі зображень буде знаходитиметься зображення В' предметної точки В. З подібності трикутників випливає, що


- у'/у = -f/-z = z'/f.


Звідси можна одержати формулу Ньютона: яку можна одержати, підставивши в (3) z і z', виражені через а й а' згідно з рис. 5.

Відрізки а й а', що визначають положення предмета і зображення щодо відповідних головних площин, знаходяться з формули відрізків:


Рисунок 4- Схема для виводу формули кутового збільшення і формули кутів

Рисунок 5- Схема для знаходження продольного збільшення

zz = ff.(3)

f'/a' + f/a = 1, (4)


При f' = -f формула (4) приймає вигляд


l/a' - l/a = 1/f'. (5)


Лінійне збільшення  може бути виражене завдяки відрізкам z, z' і f':


 = -f/z = -z/f'. (6)


Якщо у формулі (6) z і z' замінимо на а - f та а' - f', одержимо


(7)

а' = (1 - )f'. (8)


При n = n' відрізок а = (1 - ) f'/.

Якщо відстань між площинами предмета і зображення дорівнює L, а між головними точками , то при заданих L, і  у випадку, якщо n = n', матимемо, що


f' = -(L-)/(1-)2; (9)

a' = -(L-)/(1-); (10)

a = -(L-)/(1-). (11)


Лінійне збільшення через відрізки а й а' визначають за формулою


 = -fa/f'а = na'/n'a. (12)

Наведені вище формули (3)-(12) при відомих вихідних даних дозволяють знайти положення (відрізки z', а') і розмір зображення (y').

Уведемо поняття ще про два збільшення оптичної системи.

Кутовим збільшенням оптичної системи називають відношення тангенсів кутів, утворених сполученими променями з оптичною віссю:


y = tg '/tg . (13)


З рис. 6 випливає, що


 = а/а'. (14)


Використовуючи формули (12) і (14), одержимо, що


 = . (15)


Формула (15) установлює зв'язок між кутовим і лінійним збільшеннями.

Точки предмета і зображення, що лежать на оптичній осі, для яких  = +1. називаються вузловими точками оптичної системи. З формули (15) видно, що вузлові точки збігаються з головними ( = +1) у тому випадку, якщо оптична система знаходиться в однорідному середовищі. У цьому випадку сполучені промені, що проходять крізь головні точки Н і Н', рівнобіжні один одному.

Подовжнім збільшенням  оптичною системою називають відношення розміру зображення нескінченно малого відрізка, розташованого уздовж оптичної осі, до розміру цього відрізка:


 = dz'dz.

Продиференціюємо формулу Ньютона (3) по z і z'. Після множення і розподілу знайденого вираження на ff' і заміни відносин z'/f' і f/z через  одержимо, що


Случайные файлы

Файл
9794-1.rtf
8290.rtf
21775.doc
20203-1.rtf
160907.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.