Лазер (англ. laser, сокр. от Light Amplification by Stimulated Emission of Radiation – «усиление света посредством вынужденного излучения»), оптический квантовый генератор – устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения.

Существуют лазеры с длинами волн от ультрафиолетовых до инфракрасных, а мощность лазеров может варьироваться от нескольких долей милливатта для медицинских применений до киловатт – для лазеров, применяемых в промышленности.

Устройство лазера

Лазер состоит из источника энергии (механизм «накачки), активной среды и системы зеркал (резонатора).



Источником энергии может быть электрический разрядник, импульсная или дуговая лампа, другой лазер, химическая реакция и т.д.

Активной средой может быть газ (углекислый, аргон, криптон) или смесь газов (гелий-неон или ксенон хлор), жидкость (краситель), пары металла (медь, золото), твёрдые тела (кристаллы, стекло), полупроводники и др.

С практической точки зрения лазер – это источник света, который испускает узкий пучок света. Этот пучок света имеет определенную длину волны и распространяется с маленькой расходимостью.

Внутри лазера энергия возбуждает «активную среду», которая излучает энергию в виде света.

Активная среда содержит большее количество атомов в возбужденном состоянии, чем атомов с более низким уровнем энергии. Световая волна формируется, когда атом из «возбужденного» состояния, где он содержит определенное количество энергии, переходит в другое состояние с меньшим количеством энергии. Различие в энергии между двумя уровнями соответствует энергии испускаемой волны.

Гигантское количество атомов излучают согласованно, в результате возникает внутренне упорядоченный световой поток. Это есть когерентный свет.

Излучённая активной средой световая волна с определённой энергией отражается от зеркал (резонатор) и опять возвращается в активную среду снова возбуждая всё новые атомы. Этот продолжающийся процесс и световой пучок становится сильнее и сильнее. Волна может отражаться многократно до момента выхода наружу. Обычно используется частично прозрачное зеркало с одной из сторон, чтобы обеспечить выход требуемой части лазерного луча.

Оптический резонатор, простейшей формой которого являются два параллельных зеркала, находится вокруг рабочего тела лазера.

В более сложных лазерах применяются четыре и более зеркал, образующих резонаторов.

Физические основы работы лазера

Спонтанные и вынужденные переходы.

Согласно классическим представлениям, испускание и поглощение электромагнитного излучения количественно связывается с замедлением и ускорением электрические зарядов. Например, процесс спонтанного испускания сопровождается постепенным расходом начальной энергии осциллятора на излучение в течение некоторого промежутка времени, количественной характеристикой которого служит так называемое время жизни t. В результате излучаемая мощность уменьшается со временем по экспоненте и рассеивается в пространстве в форме сферических волн.

В квантовой теории имеют дело со стационарными состояниями, а элементарные акты поглощения и испускания предполагаются происходящими мгновенно. Эйнштейн предложил процесс излучения или поглощения характеризовать вероятностью, или численным коэффициентом, который определяет, сколько переходов происходит в среднем в единицу времени с каждым из атомов данного ансамбля. Вероятности, получаемые из опыта, являются эмпирическими постоянными атомных процессов, знание которых и позволяет численно описать поведение данной совокупности атомов. Квантовая механика дает возможность, исходя из строения атома, вычислить значения этих коэффициентов.

Испускание может быть спонтанным (происходящим при отсутствии воздействия внешнего излучения) и вынужденным (происходящим в результате воздействия внешнего излучения). Поглощение всегда является вынужденным процессом.

Пусть имеется два уровня, содержащих одинаковые частицы, которые могут испускать фотоны частоты n ik.



Согласно постулатам Эйнштейна, число спонтанных переходов в единицу времени в единице объема с верхнего уровня на нижний пропорционально количеству частиц на исходном уровне.



Соотношение строго выполняется, если элементарные процессы независимы, что в большинстве случаев и наблюдается.



определяет число спонтанно испускаемых в единицу времени фотонов частоты n ik в расчете на одну возбужденную частицу с энергией Ei. Поэтому этот коэффициент называется вероятностью спонтанного испускания, или коэффициентом Эйнштейна для спонтанного испускания.

Число фотонов, поглощенных в единице объема за единицу времени, также пропорционально населенности исходного (нижнего) уровня и еще зависит от плотности падающего излучения r на данной частоте (энергии фотонов в единице объема).



  • – это Эйнштейновский коэффициент поглощения. Вероятность поглощения равна.

Аналогично определяется число фотонов в случае вынужденного излучения, испускаемых за единицу времени при переходе с верхнего уровня на нижний под воздействием внешнего излучения.



Этот коэффициент носит название Эйнштейновского коэффициента для вынужденного излучения. Вероятность перехода равна

Если нет вырождения энергетических уровней, то вероятности вынужденных переходов с излучением и поглощение кванта равны. Это означает, что фотон с одинаковой вероятностью может индуцировать излучение или быть поглощен.

В состоянии теплового равновесия высокие энергетические уровни имеют меньшую населенность, чем низкие, поэтому акты поглощения происходят гораздо чаще, чем акты индуцированного испускания. Общий энергетический баланс поддерживается за счет спонтанного излучения.

В случае спонтанных процессов испускание фотонов происходит в любом направлении, а вынужденное испускание – в направлении распространения падающего на частицу излучения.

История

История изобретения лазера началась в 1916 году, когда Альберт Энштейн создал теорию взаимодействия излучения с веществом, где прослеживалась мысль о возможности создания квантовых усилителей и генераторов электромагнитных волн.

В 1928 году, Ланденбург, сформулировал условия обнаружения индуцированного излучения, отметив, что для этого необходимо специальное избирательное возбуждение квантовой системы.

В 1955 году Николай Басов и Александр Прохоров разработали квантовый генератор – усилитель микроволн с помощью индуцированного излучения, активной средой которого является аммиак.

А в 1958 году Александр Прохоров использовал для создания лазера резонатор Фабри-Перо, представляющий собой два параллельных зеркала, одно из которых полупрозрачно.

Первый работающий лазер был сделан Теодором Майманом в 1960 году в исследовательской лаборатории компании Хьюза (Hughes Aircraft), которая находилась в Малибу, штат Калифорния с привлечением групп Таунса из Колумбийского Университета и Шалоу из компании Bell laboratories. Майман использовал рубиновый стержень с импульсной накачкой, который давал красное излучение с длиной волны 694 нанометра. Примерно в то же время иранский физик Али Яван представил газовый лазер. Позднее за свою работу он получил премию имени Альберта Эйнштейна.

В том же году доктор Леон Голдман впервые использовал рубиновый лазер для разрушения волосяных фолликулов.

Революционные достижения лазерных технологий не могли не затронуть отрасли эстетической медицины и в 1964 году был изобретён лазер на диоксиде углерода (СО2 – лазер) для хирургических целей. С этого момента лазерная косметология стала развиваться большими темпами.

В 1983 г. Андерсон и Парриш предложили метод селективного фототермолиза, который основан на способности биотканей избирательно поглощать световое излучение определенной длины волны, что приводит к их локальной деструкции. При поглощении основными хромофорами кожи – водой, гемоглобином или меланином – электромагнитная энергия лазерного излучения преобразуется в тепло, что вызывает нагрев и коагуляцию хромофоров. При этом одновременно происходит охлаждение нагретого участка ткани за счет теплопроводности, т.е. тепло переходит от более теплого участка к более холодному. Таким образом, для того чтобы преобразовавшаяся тепловая энергия накапливалась исключительно в выбранном для разрушения хромофоре, активный нагрев мишени должен происходить быстрее, чем ее пассивное охлаждение.

Свойства лазерного излучения

В отличие от обычных, тепловых источников излучения лазер дает свет, обладающий целым рядом особых и очень ценных свойств.

1. Лазерное излучение когерентно и практически монохроматично. До появления лазеров этим свойством обладали только радиоволны, излучаемые хорошо стабилизированным передатчиком. А это дало возможность освоить диапазон видимого света для осуществления передачи информации и связи, тем самым существенно увеличив количество передаваемой информации в единицу времени.

Из-за того, что вынужденное излучение распространяется строго вдоль оси резонатора, лазерный луч расширяется слабо: его расходимость составляет несколько угловых секунд.

Все перечисленные качества позволяют фокусировать лазерный луч в пятно чрезвычайно малого размера, получая в точке фокуса огромную плотность энергии.


Случайные файлы

Файл
19268.rtf
130260.rtf
~$РПЗ.docx
20737-1.rtf
plan2_3.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.