Альтернативная энергетика (151492)

Посмотреть архив целиком

Содержание


Введение

Основные направления альтернативной энергетики

Альтернативный источник энергии

Классификация источников

Ветроэнергетика

Гелиоэнергетика

Геотермальная энергетика

Космическая энергетика

Водородная энергетика и сероводородная энергетика

Биотопливо

Распределённое производство энергии

Перспективы

Вывод






Введение


В теплоэнергетике в настоящее время более 180 тысяч малых и мелких котельных индивидуальных, отопительных, с общей теплопроизводительностью 680 млн. Гкал в год и расходом топлива 140 млн. т.у.т. или 30% от расхода топлива, затраченного на производство тепла.

Действующие теплоустановки возобновляемой энергетики (2008 год):

- солнечные системы теплоснабжения с площадью солнечных коллекторов до 100 тыс. кв.м;

- более 3000 тепловых насосов единичной мощностью от 4 кВт до 8 МВт;

- около 20 биоэнергетических установок по переработке отходов животноводства и птицеводства с выработкой биогаза;

- геотермальное теплоснабжение в объеме 3 млн. Гкал в год;

- 8 мусоросжигающих заводов;

- 4 станции по переработке городских сточных вод;

- несколько котельных на отходах лесопереработки.

Принцип получения тепла, ничем не отличается от принипа получения электрической энергии, просто процесс короче на один шаг.

Суммарная доля малой и возобновляемой энергетики составляет около 160 млн. т.у.т. в год или 17% от внутреннего потребления в 1995 г. (948 млн. т.у.т.).

Что объединяет малую и возобновляемую энергетику? Их объединяет, несмотря на принципиально разные ресурсы (невозобновляемые и возобновляемые) и различное влияние на окружающую среду:

1) предназначение для непосредственного удовлетворения бытовых и производственных нужд человека и небольших коллективов в электрической и тепловой энергии;

2) ориентация на местные виды ресурсов;

3) возможность комбинированного использования для достижения экономичного и надежного энергоснабжения.

Во имя чего следует развивать эти отрасли энергетики? Энергетическая стратегия России дает ответ на этот вопрос, объявляя высшим приоритетом энергообеспечение населения. Другими словами речь идет о надежном обеспечении энергией, светом, теплом, чистой водой, топливом для приготовления пищи, почтовой, телеграфной и телефонной связью людей, проживающих в районах автономного (децентрализованного) энергоснабжения и энергодефицитных районах. А это касается 20-30 млн. человек. Эти цифры получены следующим образом: взглянем на карту России. Зоны децентрализованного энергоснабжения и неэлектрифицированные зоны составляют около 70% территории. Неэлектрифицированные поселения встречаются и в зонах централизованного энергоснабжения.

Однако не все социальные проблемы решаются энергетическими стратегиями. И ни одна техническая проблема не решится этой стратегией. Т.е. существует ряд проблем (технических, экономических, социальных) и мифов замедляющих процесс развития альтернативной энергетики.

Альтернативная энергетика — совокупность перспективных способов получения энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при низком риске причинения вреда экологии района.






Основные направления альтернативной энергетики


  1. ветроэнергетика

Автономные ветрогенераторы

  1. гелиоэнергетика

Солнечный водонагреватель

Солнечный коллектор

Фотоэлектрические элементы

  1. альтернативная гидроэнергетика

приливные электростанции

волновые электростанции

мини и микро ГЭС (устанавливаются в основном на малых реках)

водопадные электростанции

  1. геотермальная энергетика

Тепловые и электростанции (принцип отбора высокотемпературных грунтовых вод и использования их в цикле)

Грунтовые теплообменники (принцип отбора тепла от грунта по средством теплообмена)

  1. космическая энергетика

Получение электроэнергии в фотоэлектрических элементах, расположенных на орбите Земли. Электроэнергия будет передаваться на землю в форме микроволнового излучения.

  1. водородная энергетика и сероводородная энергетика

Водородные двигатели (для получения механической энергии)

Топливные элементы (для получения электричества)

  1. биотопливо

Получение биодизеля

Получение метана и синтез-газа

Получение биогаза

  1. распределённое производство энергии

Новая тенденция в энергетике, связанная с производством тепловой и электрической энергии.


Альтернативный источник энергии


Альтернативный источник энергии — способ, устройство или сооружение, позволяющее получать электрическую энергию (или другой требуемый вид энергии) и заменяющий собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле. Цель поиска альтернативных источников энергии — потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений. Во внимание может браться также экологичность и экономичность.


Классификация источников


Тип источников

Преобразуют в энергию

Ветряные

движение воздушных масс

Геотермальные

тепло планеты

Солнечные

электромагнитное излучение солнца

Гидроэнергетические

падение воды

Биотопливные

теплоту сгорания возобновляемого топлива (например, спирта)


Ветроэнергетика


отрасль энергетики, специализирующаяся на использовании энергии ветра — кинетической энергии воздушных масс в атмосфере. Энергию ветра относят к возобновляемым видам энергии, так как она является следствием деятельности солнца. Ветроэнергетика является бурно развивающейся отраслью, так в конце 2008 года общая установленная мощность всех ветрогенераторов составила 120 гигаватт, увеличившись вшестеро с 2000 года.

Экономия топлива

Ветряные генераторы практически не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет эксплуатации позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти.

Себестоимость электроэнергии

Себестоимость электричества, производимого ветрогенераторами, зависит от скорости ветра.

экономические проблемы

Ветроэнергетика является нерегулируемым источником энергии. Выработка ветроэлектростанции зависит от силы ветра — фактора, отличающегося большим непостоянством. Соответственно, выдача электроэнергии с ветрогенератора в энергосистему отличается большой неравномерностью как в суточном, так и в недельном, месячном, годовом и многолетнем разрезе. Учитывая, что энергосистема сама имеет неоднородности нагрузки (пики и провалы энергопотребления), регулировать которые ветроэнергетика, естественно, не может, введение значительной доли ветроэнергетики в энергосистему способствует её дестабилизации. Понятно, что ветроэнергетика требует резерва мощности в энергосистеме (например, в виде газотурбинных электростанций), а также механизмов сглаживания неоднородности их выработки (в виде ГЭС или ГАЭС). Данная особенность ветроэнергетики существенно удорожает получаемую от них электроэнергию.

Небольшие единичные ветроустановки могут иметь проблемы с сетевой инфраструктурой, поскольку стоимость линии электропередач и распределительного устройства для подключения к энергосистеме могут оказаться слишком большими. Проблема частично решается, если ветроустановка подключается к местной сети, где есть энергопотребители. В этом случае используется существующее силовое и распределительное оборудование, а ВЭС создаёт некоторый подпор мощности, снижая мощность, потребляюмую местной сетью извне. Трансформаторная подстанция и внешняя линия электропередач оказываются менее нагруженными, хотя общее потребление мощности может быть выше.

Крупные ветроустановки испытывают значительные проблемы с ремонтом, поскольку замена крупной детали (лопасти, ротора и т. п.) на высоте более 100 м является сложным и дорогостоящим мероприятием.

Экологические аспекты ветроэнергетики.

  1. Выбросы в атмосферу

Ветрогенератор мощностью 1 МВт сокращает ежегодные выбросы в атмосферу 1800 тонн СО2, 9 тонн SO2, 4 тонн оксидов азота .

  1. Шум

Ветряные энергетические установки производят две разновидности шума:

механический шум — шум от работы механических и электрических компонентов (для современных ветроустановок практически отсутствует, но является значительным в ветроустановках старших моделей)

аэродинамический шум — шум от взаимодействия ветрового потока с лопастями установки (усиливается при прохождении лопасти мимо башни ветроустановки)

  1. Низкочастотные вибрации

Низкочастотные колебания, передающиеся через почву, вызывают ощутимый дребезг стекол в домах на расстоянии до 60 м от ветроустановок мегаваттного класса.

Как правило, жилые дома располагаются на расстоянии не менее 300 м от ветроустановок. На таком расстоянии вклад ветроустановки в инфразвуковые колебания уже не может быть выделен из фоновых колебаний.

  1. Обледенение лопастей

При эксплуатации ветроустановок в зимний период при высокой влажности воздуха возможно образование ледяных наростов на лопастях. При пуске ветроустановки возможен разлет льда на значительное расстояние. Как правило, на территории, на которой возможны случаи обледенения лопастей, устанавливаются предупредительные знаки на расстоянии 150 м от ветроустановки.

Кроме того, в случае легкого обледенения лопастей были отмечены случаи улучшения аэродинамических характеристик профиля.

  1. Визуальное воздействие

Визуальное воздействие ветрогенераторов — субъективный фактор. Для улучшения эстетического вида ветряных установок во многих крупных фирмах работают профессиональные дизайнеры. Ландшафтные архитекторы привлекаются для визуального обоснования новых проектов.


Случайные файлы

Файл
163374.rtf
79026.rtf
refbn.doc
92991.rtf
102658.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.