Новые разработки для процесса редуцирования газа в газорегулирующих системах (151411)

Посмотреть архив целиком

ООО «Кавказтрансгаз» Астраханское ЛПУМГ










РЕФЕРАТ НА ТЕМУ:

Новые разработки для процесса редуцирования газа в газорегулирующих системах






Исполнитель: оператор ГРС 4-го разряда

Качалов Д.С.









Астрахань , 2009год.


Содержание


Введение

1. Регуляторы давления газа. Применение. Основные типы регуляторов давления газа. Принципы действия

2. Гидратообразование при редуцировании газа. Методы по предотвращению гидратообразования.

3. Новые разработки для газорегулирующих систем

4. Регуляторы с теплогенераторами РДУ-Т

4.1 Регулятор давления газа «РДУ-Т». Область применения, основные характеристики, принцип работы

4.2 Технико-экономическое сравнение применения разных методов для решения задачи по недопущению и ликвидации гидратообразования (обмерзания) в процессе редуцирования на ГРС

Заключение

Использованная литература


Введение


Арматура - неотъемлемая часть любого трубопровода, предназначенного для управления потоками транспортируемой среды (в газопроводах газа).

Разнообразные условия, при которых работает арматура, специфичность требований, предъявляемых к ней, вопросы надежности и долговечности, большая разновидность конструкций затрудняют выбор арматуры для конкретных условий работы. Правильный выбор того или иного конструктивного типа арматуры в значительной степени предопределяет безаварийную работу как отдельных технологических процессов в целом, так и трубопроводов в частности.

В классификацию конструкций устройств трубопроводной арматуры с учетом функционального назначения [4] входят газовые регуляторы давления.

  1. Регуляторы давления газа. Применение. Основные типы регуляторов давления газа. Принципы действия


Регуляторы давления газа применяют в автоматических и неавтоматических газорегулирующих системах. На ГРС регуляторы давления газа входят в качестве основного оборудования в блок редуцирования, который предназначен для снижения высокого входного давления газа Рвх = 12÷75 кгс/см2 до низкого выходного Рвых = 3÷12 кгс/см2 и автоматического поддержания заданного давления на выходе из узла редуцирования, а также для защиты газопровода потребителя от недопустимого повышения давления.

Регуляторы давления газа предназначены для снижения и автоматического поддержания давления газа «после себя» на заданном уровне.

На ГРС применяются регуляторы давления прямого и непрямого действия.

Регуляторы прямого действия – перемещение регулирующего органа осуществляется за счёт энергии регулируемого потока газа. Регулятор давления прямого действия представляет собой дроссельное устройство, приводимое в действие мембраной, находящейся под воздействием регулируемого давления. Всякое изменение давления газа вызывает перемещение мембраны, а вместе с ней и изменение проходного сечения дроссельного устройства, что влечёт за собой уменьшение или увеличение количества газа, протекающего через регулятор. В регуляторах прямого действия чувствительный элемент, воспринимающий измерительный импульс, непосредственно осуществляет перемещение регулирующего органа.

Регуляторы давления непрямого действия – регуляторы, в которых производится перемещение регулирующего органа за счёт энергии от постороннего источника. В регуляторах давления непрямого действия с командными приборами уравновешивание усилий от давления газа на мембрану осуществляется не грузами, пружинами или постоянным давлением газа, а давлением газа, которое устанавливают вспомогательным устройством, называемым командным прибором. Они характеризуются наличием усилителя, воспринимающего и усиливающего измерительный импульс. Разделяются на пилотные и приборные.

На газораспределительных станциях Астраханского ЛУМГП используются регуляторы прямого и непрямого действия: РД-64,РД-32, РД-25, РДУ-80, РДУ-100, РДМ-150/300, РДГ-150.

  1. Гидратообразование при редуцировании газа. Методы по предотвращению гидратообразования


Наибольшие трудности при редуцировании газа возникают из-за образования гидратов, которые в виде твердых кристаллов оседают на стенках трубопроводов в местах установки сужающих устройств, на клапанах регуляторов давления газа, в импульсных линиях контрольно-измерительных приборов (КИП).

Наиболее благоприятны для образования гидратов падение температуры и давления, что влечет за собой уменьшение как упругости водяных паров, так и влагоемкости газа, в результате чего происходит образование гидратов.

При редуцировании (дросселировании) газа происходит снижение его температуры, что приводит к отложению твердых кристаллогидратов на поверхности клапана и седла клапана регуляторов давления, вследствие чего они перестают работать, и что может привести к полной остановке ГРС.

Гидраты представляют собой белые кристаллы, похожие на плотную снегообразную кристаллическую массу, при уплотнении напоминающую лед. Кристаллогидраты состоят из одной или нескольких молекул газа (метана, этана и пр. по составу транспортируемого газа см.таблицу 1) и нескольких молекул воды.


Таблица 1. Состав транспортируемого товарного газа

Наименование параметра

Состав транспортируемого газа

Метан

Этан

Пропан

Бутан

Пентан

Эмпирическая формула

СН4

С2Н6

С3Н8

С4Н10

С5Н12

Долевая часть

0,95

0,04

0,007

0,002

0,001


Так, например:

  • метан и этан образуют газовые гидраты с формулами и ;

  • пропан и изобутан образуют гидраты и .

При транспорте газа образуются смешанные гидраты, которые являются нестабильными соединениями и при определенных условиях (понижение давления, повышение температуры) легко разлагаются на газ и воду.

Для определения зоны возможного гидратообразования необходимо знать давление газа и его температуру после редуцирования. На рис.1 представлен график границы гидратообразования от температуры и давления насыщенного парами воды природного газа [1].


Рис.1. Зависимость гидратообразования от температуры и давления насыщенного парами воды природного газа


Условия образования гидратов с различной относительной плотностью можно определить по графику [1] на рис.2.

Рис.2. График гидратообразования для природных газов с различной относительной плотностью.


Углеводороды характеризуются максимальной температурой, выше которой ни при каком повышении давления нельзя вызвать гидратообразование газов. Эта температура называется критической температурой гидратообразования и равна [1] ,0С: для метана +21,5; этана +14,5; пропана +5,5; н-бутана +2,5 ; изобутана +1.

Для практических расчетов снижение температуры в результате дросселирования можно принимать равным 0,550С на 1 кгс/см2 или определять по графику «температура-энтальпия природного газа» [1].

Например, газ редуцируют с Рн=54 кгс/см2(5,4 МПа) до 3 кгс/см2(3 МПа).

Определить конечную температуру газа tк, если начальная температура равна 100С (окружающего воздуха).

Разница давлений ΔР = 54-3 = 51 кгс/см2

Снижение температуры при дросселировании :Δt= 51*0,55=28,050С

Конечная температура газа tк = +10-28,05= - 18,050С.

В качестве методов по предотвращению гидратообразования (обмерзания) в настоящее время применяют:

  • общий или частичный подогрев газа;

  • местный обогрев корпусов регуляторов давления;

  • ввод метанола в коммуникации газопровода.

Наиболее широко применим первый метод, второй – менее эффективен, третий дорогостоящий.

Основными наиболее распространенными мероприятиями по недопущению обмерзания регуляторов являются:

  1. размещение регуляторов в специальном помещении с обогревом с температурой в помещении не ниже 80С,

  2. применение установки подогрева входного газа в зимний период,

  3. применение электрического ленточного обогревателя путём обматывания регулятора (местный обогрев),

  4. установка системы подачи метанола в газопровод.

Каждый из данных методов имеет свои положительные и отрицательные стороны, но все эти методы объединяет одно – высокая стоимость применяемого дополнительного оборудования, трудозатраты при обслуживании и эксплуатации дополнительного оборудования, повышенные требования промышленной безопасности при обслуживании и эксплуатации.

Так, например: метанол – это сильный яд, который может быть смертельным для человека, и использование которого в технологических процессах должно быть ограничено до минимума, а по возможности исключено, хотя данный метод очень эффективен при ликвидации образовавшихся гидратных пробок.

  1. Новые разработки для газорегулирующих систем


На сегодняшний день на рынке предлагается трубопроводная арматура (ТПА) нового поколения как отечественного, так и импортного производства.

Разработкой новой научно-технической документации по строительству, монтажу и эксплуатации ГРС занимаются ведущие предприятия и организации России, имеющие большой опыт проектирования технологического оборудования ГРС. К таким фирмам и предприятиям относятся «Саратовгазприборавтоматика» и «Саратовгазавтоматика» (г. Саратов), «Агрогаз» (г. Екатиринбург), ВНИИР и ОКБ «Союз» (г. Казань), «Оргэнергогаз» (г. Москва), ОАО «Завод «Старорусприбор» (Новгородская область, г. Старая Русса),ООО «Армтехстрой» г. Курган и др.


Случайные файлы

Файл
72235-1.rtf
snip_12-03-2001.doc
114882.rtf
13457.rtf
34611.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.