Микроструктурные исследования сплавов системы CuInSe2–CuSbSe2 (151317)

Посмотреть архив целиком















МИКРОСТРУКТУРНЫЕ ИССЛЕДОВАНИЯ СПЛАВОВ СИСТЕМЫ CuInSe2-CuSbSe2

(реферат)


Введение


В современной фотоэлектронной энергетике особое значение придается поиску новых полупроводниковых соединений, которые дали бы возможность заменить монокристаллические кремниевые элементы. Одним из классов этих материалов являются соединения I-III-VI2, где I-Cu, Ag; III-Al, Ga, In; VI - S, Se, Te. Соединение со структурой халькопирита CuInSe2 принадлежит к этой группе и активно исследуется как материал для солнечных элементов в тонкопленочном исполнении, причем к настоящему времени для таких солнечных элементов достигнут кпд 18,8% [1]. Вместе с тем, для дальнейшего улучшения параметров устройств на основе многокомпонентных материалов необходима разработка способов изменения их свойств, в частности, с помощью контролируемого легирования или получения сплавов на их основе. В связи с этим важным является знание пределов растворимости, а в общем случае, фазовых диаграмм состояния таких систем.

Целью настоящей работы являлось изучение сплавов полупроводниковой системы CuInSe2-CuSbSe2 с помощью рентгенофазового анализа (РФА) и микроструктурных исследований.

Было получено 11 сплавов полупроводниковой системы (CuInSe2) x- (CuSbSe2) 1-x с x = 0, 0.05, 0.15, 0.25, 0.375, 0.50, 0.625, 0.75, 0.85, 0.95 и 1, где x - молярная доля CuInSe2. Для получения сплавов применяли непосредственное сплавление взятых в соответствующем соотношении элементов. Использовали компоненты марок B3 (медь), Ин000 (индий), “Экстра" (сурьма) и осч 17-4 (селен). Исходные компоненты общей массой 10 г загружали в кварцевые ампулы, которые вакуумировали до остаточного давления 1,310-5 гПа и запаивали. Осуществление синтеза проводили в печи сопротивления, первоначально производили нагрев со скоростью 3 К/мин до температур на 30-50 K, превышающих температуры плавления соответствующих сплавов, после чего осуществляли изотермическую выдержку в течение 2 ч. По завершении этой процедуры проводили охлаждение до комнатной температуры со скоростью 3-5 К/мин. Изотермический отжиг был проведен при 683 К в течение 550 ч.

Исследование микроструктуры проводили в отраженном свете на металлографическом микроскопе МИМ-7 с использованием цифровой камеры, а также с помощью электронно-зондового анализа. Микроструктуру изучали непосредственно после полировки и промывки микрошлифов.

На основании РФА было определено, что все полученные сплавы, за исключением исходных тройных соединений CuInSe2 и CuSbSe2, являются двухфазными, на основании чего можно сделать вывод, что взаимная растворимость соединений CuInSe2 и CuSbSe2 не превышает 0.05 мол. доли. Параметры решетки составили для a и c, соответственно, 5.782 и 11.62 Å (CuInSe2), для a, b и c, соответственно, 6.303, 3.976 и 15.008 Å (CuSbSe2).

Микроструктурные исследования сплавов (CuSbSe2) x- (CuInSe2) 1-x подтвердили, что все полученные сплавы с x = 0.05, 0.15, 0.25, 0.375.0.50, 0.625.0.75, 0.85 и 0.95, являются двухфазными (Рис.1). Выделяющиеся сначала первичные кристаллы на основе CuInSe2 растут свободно в жидкости и до тех пор, пока не срастаются друг с другом и имеют правильные кристаллические формы (Рис.1а). Правильность кристаллических форм для исследуемой системы проявляется в образовании разветвленных дендритов. В тех случаях, когда происходит сечение дендрита плоскостью шлифа, обнаруживаются правильные ряды овальных или граненых зерен. При еще большем возрастании концентрации более высокотемпературного компонента CuInSe2 происходит увеличение размеров и срастание дендритов, хотя, тем не менее, они по-прежнему проявляются (Рис.1б, 1в). При дальнейшем росте концентрации фазы на основе CuInSe2 осуществляется срастание зерен, а закристаллизовавшаяся жидкость на основе CuSbSe2 проявляется в виде прожилок более светлого цвета (Рис.1г).