Что такое генератор (151112)

Посмотреть архив целиком

Воронежский Государственный Технический университет






РЕФЕРАТ

На тему: “Что такое генератор”


Выполнил студент группы ЭСХ-011 Калиганов С.А.

Проверил









Воронеж

2002

Содержание


  1. Роль и значение машин постоянного тока

  2. Принцип работы машин постоянного тока

  3. Конструкция машин постоянного тока

  4. Характеристики генератора смешанного возбуждения


















Роль и значение машин постоянного тока


В настоящее время машины постоянного тока изготов­ляются на мощности от долей ватт до 12 МВт. Номиналь­ное напряжение их не превышает 1500 В и только иногда для крупных машин доходит до 3000 В. Частота вращения машин колеблется в широких пределах от нескольких оборотов до нескольких тысяч оборотов в минуту.

Наиболее широкое применение нашли машины постоян­ного тока с механическим коммутатором коллектором. Коллектор осложняет условия работы машины, но опыт эксплуатации в самых тяжелых условиях работы показал, что правильно спроектированная и качественно изготовлен­ная машина постоянного тока является не менее надежной, чем более простые по конструкции машины переменного тока.


Принцип работы машин постоянного тока

На рис. 1 схематично изображен поперечный разрез машины постоянного тока. На неподвижной части машины (статоре) размещаются стальные полюсы П с надетыми на них катушками обмотки возбуждения В. Катушки соединяются между собой так, чтобы при прохождении по обмотке постоянного тока полюсы приобретали чередующуюся полярность (N, S, N, S и т.д.). Магнитный поток Ф, созда­ваемый обмоткой возбуждения, неизменен во времени.



Рис. 1. Поперечный разрез машины постоянного тока с кольцевой обмоткой якоря

На вращающейся части машины располагается обмотка О, в которой индуцируется основная ЭДС, поэтому - в машинах постоянного тока вращающуюся часть называют якорем.

Обмотка располагается на стальном сердечнике, закреп­ленном на валу (на рисунке не показан). Предположим, что сердечник выполнен в виде полого цилиндра, на внешней и внутренней поверхностях которого размещаются провод­ники. С торцевых сторон эти проводники соединяются меж­ду собой, образуя замкнутый контур. Сплошные линии по­казывают соединения проводников с переднего торца сер­дечника, а штрихпунктирные - с заднего.

Изображенные на рис. 1 сердечник и обмотка назы­ваются кольцевыми. В настоящее время они не имеют прак­тического применения, но их часто используют при анализе рабочих свойств машины, благодаря чему этот анализ приобретает большую наглядность.

От обмотки якоря выполняются ответвления к пласти­нам коллектора. Коллектор располагается на валу якоря и представляёт собой цилиндрическое тело, состоящее из электрически изолированных между собой медных пластин. Часть обмотки, заключенная между следующими друг за другом ответвлениями к коллекторным пластинам, называ­ется секцией. Обмотка имеет большое число секций, каждая из которых состоит из одного или нескольких витков. Число коллекторных пластин равно числу секций. На рис. 1 обмотка состоит из 12 одновитковых секций, а коллектор имеет 12 пластин.

При вращении якоря в проводниках его обмотки инду­цируется ЭДС, направление которой определяется по пра­вилу правой руки. В кольцевой обмотке ЭДС будет инду­цироваться только в проводниках, расположенных на внеш­ней поверхности сердечника. В проводниках, лежащих на внутренней поверхности, ЭДС не наводится, так как эти про­водники не пересекают индукционных линий магнитного по­ля. Поэтому проводники, расположенные на внешней поверхности сердечника, являются активными, а на внутрен­ней - пассивными.

В обмотке якоря машины постоянного тока наводится переменная ЭДС, так как каждый проводник поочередно проходит полюсы разной полярности, вследствие чего ЭДС в них меняет свое направление. Если машина работает ге­нератором, то переменная ЭДС обмотки должна быть вы­прямлена. Достигается это с помощью коллектора. С кол­лектором соприкасаются неподвижные щетки Щ, посредст­вом которых обмотка якоря соединяется с внешней сетью. Для того чтобы ЭДС на выводах машины была максималь­на, щетки следует установить в тех местах, где ЭДС, наво­димая в проводниках, меняет направление. Это происходит под серединой межполюсного промежутка. Воображаемая линия, проведенная через середину межполюсного проме­жутка, называется геометрической нейтралью ГН. Следовательно, в машинах постоянного тока щетки должны быть установлены на геометрической нейтрали. Поскольку число нейтралей равно числу полюсов, то и число мест, где уста­навливаются щетки, выбирается равным числу полюсов.

Для момента времени, изображенного на рис. 1, между каждой парой соседних щеток включены проводники об­мотки якоря с одинаковым направлением ЭДС. Поэтому щетки, соприкасающиеся с определенными коллекторными пластинами, будут иметь указанную полярность.

При вращении якоря расположение проводников и кол­лекторных пластин в пространстве будет меняться, при этом будет изменяться направление ЭДС, индуцируемой в про­водниках. Но всегда между коллекторными пластинами, с которыми соприкасаются неподвижные щетки, будут рас­полагаться проводники с одинаковым направлением ЭДС, и щетки всегда будут иметь определенную полярность. По­лярность соседних щеток, как и полярность полюсов, будет чередующейся. Щетки одноименной полярности соединяют­ся между собой, а к их общим точкам подключается внеш­няя сеть. При наличии коллектора во внешней сети генера­тора будет протекать постоянный ток, в то время как в об­мотке якоря ЭДС и ток будут переменными.

В двигателях постоянного тока к щеткам подводится по­стоянный ток. Роль коллектора в этом случае состоит в том, чтобы в любой момент времени обеспечить такое распреде­ление тока по обмотке якоря, при котором под полюсами разной полярности располагались бы проводники с проти­воположным направлением тока. Для определенного мо­мента времени такому распределению тока в якоре соот­ветствует рис. 1, если принять на нем, что крестиками и точками обозначены направления тока. При таком рас­пределении тока электромагнитные силы всех проводников будут направлены в одну сторону, в чем можно убедиться, применив правило левой руки. В результате этого при про­чих равных условиях двигатель будет создавать наиболь­ший вращающий момент.

По отношению к выводам сети обмотка якоря разбива­ется на параллельные ветви. Параллельной ветвью назы­вают группу последовательно соединенных проводников, включенных между щетками разной полярности. В данной машине обмотка имеет четыре параллельные ветви. Ее развертка по отношению к выводам сети показана на рис. 2. ЭДС на выводах машины будет равна ЭДС одной параллельной ветви, а ток в сети равен сумме токов парал­лельных ветвей.


Рис. 2. Параллельные ветви обмотки якоря


В замкнутом контуре самой обмотки якоря машины по­стоянного тока сумма ЭДС равна нулю (см. рис. 1), по­этому при разомкнутой внешней цепи ток в обмотке возни­кать не будет.



Конструкция машин постоянного тока

Ста­тор машины по­стоянного тока состоит из станины и прикрепленных к ней главных и дополнительных полюсов. Станину машин относительно небольшой мощности изготовляют из отрезков цельнотянутых труб, а у более крупных машин выполняют сварной из толстолистового стального проката. Для закрепления ма­шины на фундаменте или исполнительном механизме к ниж­ней части станины приваривают лапы, а для возможности транспортировки в станину ввертывают рым-болты.

Сердечники главных полюсов собирают из штампованных листов электротехнической стали толщиной 1 мм. Листы спрессовывают в пакет и скрепляют стальными заклепками, число которых принимают не менее четырех. Крайние листы полюса выполняют из более толстой ста­ли (4 - 10 мм) во избежание распушения листов.

Для того чтобы получить необходимый характер распре­деления магнитного поля в воздушном зазоре, полюс за­канчивают полюсным наконечником определенной формы. Воздушный зазор между полюсами и якорем или выполня­ют одинаковым по всей ширине полюсного наконечника, или под краями наконечника вследствие его скоса делают больше. Иногда выполняют эксцентричный воздушный за­зор, при котором центры радиусов якоря и наконечника полюса не совпадают. Зазор при этом постепенно увеличива­ется от середины к краю полюса.

На сердечнике полюса размещают обмотку возбужде­ния. Обмотку возбуждения изготовляют в виде катушек из медных изолированных проводников круглого или прямоугольного сечения. Катушки изолируют лентой, после пропитки и сушки насаживают на сердечник полюса и закрепляют стальными пружинящими рамками. Иногда для увеличения поверхности охлаждения катушку делят на две части. Полюс с надетой на него катушкой прикрепляют к станине болтами. Болты ввертывают в полюс, в теле которого предусматривают от­верстия с резьбой. Для более надежного крепления полюса у крупных машин и машин, работающих в условиях тряс­ки, болты вворачивают в специальный стержень, встав­ленный в полюс.

Якорь состоит из сердечника, обмотки и коллектора. Сердечник якоря выполняют из одного или нескольких пакетов, которые собирают из листов, вы­рубаемых из электротехнической стали. После штамповки листы лакируют. При длине сердечника менее 25 см его изготовляют из одного пакета (рис. 3), а при большей дли­не - из нескольких. Между пакетами с помощью специальных распорок образуются вентиляционные кана­лы, предназначенные для лучшего охлаждения якоря. В листах якоря вырубают пазы, в которые укладывают об­мотку якоря. Собранный сердечник якоря спрессовывают между двумя нажимными шайбами и закрепляют на валу втулкой либо пружинным разрезным кольцом.


Случайные файлы

Файл
174109.rtf
136418.rtf
59312.rtf
96266.rtf
22543.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.