Условия фильтрации для реактивных лестничных четырехполюсников (151048)

Посмотреть архив целиком

Академия

Кафедра Физики















Реферат

Условия фильтрации для реактивных лестничных четырехполюсников











Орёл 2009


Содержание


Назначение и классификация электрических фильтров

Свойства реактивных двухполюсников

Условия фильтрации для реактивных четырехполюсников

Заключение

Литература


Назначение и классификация электрических фильтров


Электрическим фильтром называют четырехполюсник, предназначенный для выделения из состава сложного электрического колебания частотных составляющих, расположенных в заданной полосе частот, и подавления тех составляющих, которые расположены в других, также заданных, полосах частот.

Указанные полосы называют соответственно полосой пропускания (ПП) и полосой задерживания (ПЗ) фильтра. По взаимному расположению ПП и ПЗ фильтры классифицируются следующим образом:

фильтры нижних частот (ФНЧ)

фильтры верхних частот(ФВЧ)

полосовые фильтры (ПФ)

режекторные фильтры (РФ)

Требования к АЧХ формулируются обычно в виде требований к частотной зависимости затухания (ослабления). При этом неравномерность затухания фильтра в его полосе пропускания не должна превышать некоторой величины Δа, а в пределах полосы задерживания фильтра затухание не должно принимать значений меньших, чем это допускается техническими требованиями. На рисунке 1 в качестве примера показаны требования к характеристике затухания. Здесь же изображена полоса перехода, в которой затухание не нормируется.


Рис.1


Пунктирной линией показан один из вариантов реального затухания ФНЧ, удовлетворяющего заданным требованиям.

Помимо требований к затуханию фильтра могут предъявляться и другие.

Классификация электрических фильтров может быть осуществлена также по элементной базе:

LC фильтры;

кварцевые и пьезокерамические фильтры;

электромеханические и магнитострикционные фильтры;

фильтры на поверхностных акустических волнах;

RC и ARC -фильтры;

цифровые фильтры и т.д.

По виду характеристики затухания (или АЧХ) различают фильтры с максимально-плоскими характеристиками, с равноволновыми характеристиками и фильтры со всплесками затухания.

Приведенная классификация не является исчерпывающей. Например, в технике многоканальной связи фильтры могут классифицировать по назначению: канальные, фильтры групп каналов, линейные фильтры и т.д.

Прежде чем перейти к анализу и синтезу электрических фильтров, рассмотрим свойства реактивных двухполюсников, которые являются составными элементами LC -фильтров".


Свойства реактивных двухполюсников


Реактивным двухполюсником (РД) называют электрическую цепь с двумя зажимами, состоящую из чисто реактивных элементов (индуктивностей и емкостей).

Такие двухполюсники не имеют потерь (активная составляющая сопротивления равна 0) и сопротивление их чисто реактивное. Свойства РД удобно оценивать по характеру изменения его реактивного сопротивления от частоты.

Важное значение в этом случае имеют некоторые частоты, при которых сопротивление РД обращается в нуль или стремится к бесконечно большой величине.

Частоты, при которых сопротивление РД обращается в нуль получили название нулей сопротивлений. Частоты, при которых сопротивление РД стремится к бесконечно большой величине получили название полюсов сопротивлений.

Условное расположение нулей (0) и полюсов (х) на оси частот принято называть характеристической строкой РД.

Рассмотрим характеристики простейших РД.

Сопротивление РД имеет: Сопротивление РД имеет:

нуль при ω=0 и полюс при ω=0 и

полюс при ω→ нуль при ω→



Более сложные РД получаются при последовательном или параллельном соединении простейших.

Так, соединяя последовательно L и С получим двухполюсник:



График частотной зависимости сопротивления РД и характеристическая строка имеют вид:



Таким образом рассматриваемый РД имеет два полюса сопротивления: при ω=0 и ω→ и один нуль: при ω=ω1

График частотной зависимости сопротивления и характеристическая строка двухполюсника, состоящего из параллельно соединенных элементов LC имеет вид


:


Как видно, РД имеет два нуля сопротивления: при ω=0 и ω= и один полюс: при


ω=ω1


Отметим, что на частоте резонанса (ω=ω1) происходит изменение характера реактивности двухполюсника с емкостного на индуктивный при последовательном соединении и с индуктивного на емкостной при параллельном соединении элементов.

У более сложных РД характер реактивности с ростом частоты может изменяться не один, а несколько раз.

Подобным же образом можно рассмотреть и более сложные РД и сформулировать общие правила анализа. Например, в 3-х элементном РД



Сначала наступает резонанс токов, обусловленный элементами L1 и C, а затем резонанс напряжений за счет элемента L2 и эквивалентной емкости контура L1C после его резонансной частоты:



Общие правила анализа РД:

1. Число нулей и полюсов сопротивления РД, расположенных при конечных значениях частоты, равно числу элементов L и С.

2. Нули и полюсы сопротивления РД чередуются, при этом всякий раз меняется характер реактивности.

3. Если в РД есть путь для постоянного тока, то характеристическая строка начинается с нуля, а в противном случае характеристическая строка начинается с полюса.

Зная общие правила анализа можно решить две задачи:

1. Для заданной схемы РД построить характеристическую строку и частотную зависимость его сопротивления (задача анализа).

2. Построить РД, удовлетворяющий заданным требованиям частотной зависимости и его сопротивления (задача синтеза).

Отметим, что одну и ту же характеристическую строку можно реализовать разными по структуре РД, которые в данном случае принято называть эквивалентными.

РД являются составными частями LC -фильтров, подавляющее большинство которых в аппаратуре связи имеет лестничную структуру.

Реактивный четырехполюсник называют лестничным, если образующие его РД поочередно включаются в продольные и поперечные ветви схемы.

Лестничные четырехполюсники образуют из Т- и П- образных четырехполюсников путем каскадного согласованного соединения их. Последние же получают путем соединения элементарных Г- образных полузвеньев Т- или П- образными сторонами, как показано на рисунках:


Г - образное Симметричное Симметричное полузвено Т - образное звено П - образное звено


Рассмотрим условия фильтрации для Г- образного полузвена.


Условия фильтрации для реактивных четырехполюсников


Определим условия, при которых реактивный четырехполюсник (четырехполюсник без потерь) будет электрическим фильтром, т.е. устройством, имеющим в некоторой области частот полосу пропускания, а в другой - полосу задерживания.

Условия фильтрации (УФ) найдем для четырехполюсника в виде элементарного Г- образного полузвена, а затем распространим их на каскадное соединение, т.е. на Т- и П- образные звенья.

Ранее было получено соотношение, связывающее характеристическое затухание с параметрами XX и КЗ.


(1)


Для Г- образного полузвена найдем:



С учетом этого можно записать выражение для характеристического затухания Г- образного полузвена:

(1)


Как видно из формулы, характеристическое затухание зависит от соотношения сопротивлений продольной и поперечной ветвей четырехполюсника. Условились характеристической ПП считать область частот, где характеристическое затухание равно нулю.

Следовательно, в области частот, в которой модуль выражения (1) равен 1, ln=0 и фильтр имеет ПП. При всех же других частотах ac 0 т.е. расположена ПЗ.

Не трудно заметить, что модуль выражения (1) равен 1 в двух случаях:


а) при б) при

Если обозначить jA то


Таким образом, ПП реактивного четырехполюсника расположена на частотах, на которых справедливо неравенство


; ; ; ;


Видно, что данное неравенство имеет место при выполнении двух условий:


1. и должны иметь разные знаки;

2.


Фактически это и есть условие фильтрации (т.е. условие получения ПП) для реактивного Г- образного полузвена.

При составлении звеньев и более сложных фильтров из Г- образных полузвеньев, имеющих одинаковую частоту среза, затухание суммируется, следовательно условия фильтрации определяются Г- образным полузвеном.

Рассмотрим примеры применения УФ:

  1. Данный четырехполюсник - ФНЧ.



Из графика видно, что условия фильтрации выполняются в полосе частот (0,ω0) поэтому данный четырехполюсник является ФНЧ.

Если L и С поменять местами, то нетрудно убедиться, что четырехполюсник будет ФВЧ.


2) Данный четырехполюсник - ПФ.


Определим условия фильтрации для мостового реактивного четырехполюсника.


Случайные файлы

Файл
162994.rtf
23580.rtf
94534.rtf
3652.rtf
163396.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.