Взаємодія елементарних частинок з речовиною (150111)

Посмотреть архив целиком

















РЕФЕРАТ


на тему:”Взаємодія елементарних частинок

з речовиною











План


1. Взаємодія важких заряджених частинок з речовиною.

2. Вільний пробіг важких заряджених частинок у речовині.

3. Взаємодія електронів з речовиною.

4.Взаємодія нейтронів з речовиною.


3.5.1 Взаємодія важких заряджених частинок з речовиною

До важких частинок відносяться частинки, маси яких у сотні разів більші за масу електрона. При русі в речовині важкі заряджені частинки стикаються з електронами атомів і взаємодіють з ними завдяки взаємодії їх електричних полів. Зіткнення важких заряджених частинок з ядрами атомів досить рідке явище, тому що ядра займають в атомах відносно малий об’єм . Ядра мало впливають на гальмування важких заряджених частинок.

Розглянемо якісну взаємодію важкої частинки А із зарядом q, яка рухається із деякою швидкістю повз електрон е (рис. 3.4.1). Якщо швидкість електрона набагато менша швидкості частинки, то електрон можна вважати нерухомим. При дії зарядженої частинки на нерухомий електрон виникає кулонівська сила:


(3.5.1.1)


де r – відстань між зарядами (залежить від часу); εо = 8,85·10-12 Ф/м - діелектрична проникність вакууму.

Кулонівська сила спрямована вздовж радіуса r. Позитивно заряджена частинка притягує електрон, і він починає рухатися у напрямку до частинки. Негативно заряджена частинка, навпаки, відштовхує електрон. Оскільки маса важкої частинки набагато більша маси електрона, то частинка після зіткнення з електроном майже не змінює напрямку свого руху.

Рис.3.4.1


Енергетичні втрати важкої зарядженої частинки на одне зіткнення з електроном оцінюють за формулою:

(3.4.3.2)


де p – найкоротша відстань електрона до траєкторії частинки (параметр зіткнення, рис.3.4.1).

Енергетичні втрати пропорційні квадрату заряду частинки. Із збільшенням швидкості , час взаємодії частинки з електроном, а разом з ним і втрати енергії на одне зіткнення зменшуються. Енергетичні втрати не залежать від маси частинки, тому що під зіткненням частинки з електроном розуміють взаємодію їх електричних полів. Мінімальні непружні втрати обмежуються енергією збудження електрона в атомі. Частинка може передати електрону лише порцію енергії, що дає можливість перевести його на один із збуджених рівнів атома. Внаслідок цього, починаючи з деякого параметра зіткнення p > pо, частинка взаємодіє не з окремим електроном, а з усім атомом. У цьому випадку відбувається пружне зіткнення частинки з атомом.

Максимальний параметр зіткнення pо, при якому атом збуджується або іонізується, залежить від порядкового номера Z , тобто від ступеня зв'язку електронів в атомі.

Енергетичні втрати зарядженої частинки в непружних (збудження й іонізація) і пружних (зіткненнях з атомами) прийнято відносити до іонізаційних втрат. Вони характеризуються питомою іонізацією, рівною числу іонних пар (електрон, іон), які виникають на одиниці шляху руху частинки. На створення однієї іонної пари в одній і тій же речовині всі заряджені частинки витрачають в середньому однакову енергію, з якої приблизно одна половина йде на іонізацію, а інша – на збудження і на пружні зіткнення з молекулами. Наприклад, заряджені частинки витрачають на утворення однієї іонної пари в повітрі приблизно 34 еВ своєї енергії. З цієї енергії на іонізацію молекули йде близько 15 еВ, а інші 19 еВ – на збудження і пружні зіткнення.

Питому іонізацію неважко розрахувати виходячи з питомих втрат енергії (dЕ/dx) , яка дорівнює зміні кінетичної енергії частинки на одиницю пройденого шляху в речовині. Число іонних пар Nі на одиниці шляху дорівнює питомій втраті енергії, поділеній на середні втрати енергії в речовині на утворення однієї іонної пари:


(3.5.1.2)


Питома втрата енергії частинки, як і зміна енергії електричного поля при зіткненні з електроном, залежить від квадрата заряду частинки і від квадрата її швидкості. Крім того, вона пропорційна числу електронів, з якими відбуваються зіткнення на одиниці шляху. Кількість таких зіткнень в свою чергу пропорційна концентрації атомних електронів у речовині Nе:


(3.5.1.3)


Питомі втрати енергії лінійно залежать від густини атомних електронів Nе . В свою чергу густина атомів N для твердих речовин майже постійна, а Nе1 = Nе2 . Тому іонізаційні питомі втрати енергії в двох простих речовинах відносяться між собою як їх порядкові номери в таблиці Менделєєва:


(3.5.1.4)


Так, іонізаційні втрати протона у свинці (z = 82) приблизно в 16 разів більші, ніж у вуглеці (z =6).

3.5.2 Вільний пробіг важких заряджених частинок у речовині.

Заряджена частинка проходить у речовині деяку відстань, перш ніж вона втратить всю свою кінетичну енергію. Пройдений зарядженою частинкою в речовині шлях до зупинки, називають вільним пробігом R. Величину вільного пробігу визначають за питомими втратами енергії. Чим більша густина атомних електронів і заряд частинки, тим ці втрати більші і тем менший пробіг частинки в речовині. Важкі заряджені частинки, які взаємодіють в основному з атомними електронами, мало відхиляються від напрямку свого початкового руху. Тому пробіг важкої частинки вимірюють відстанню по прямій від джерела частинок до точки її зупинки.

Параметр зіткнення а–частинок з електронами має імовірний характер, а тому вільні пробіги а–частинок у речовині мають деякий розкид. Незначна частина a–частинок проникає далі інших від джерела. Середній пробіг Ra моноенергетичних a–частинок звичайно розраховують за допомогою емпіричних формулах. Так у повітрі при нормальних умовах:


(3.5.2.1)


де Ra – пробіг у см; Ea – кінетична енергія a – частинок у МеВ.

Для a – частинок природних a – випромінювачів (4 МеВ < Ea < 9 МеВ), В = 0.318 , n = 1.5. Для a – частинок з більш високими енергіями Еа200 ( МеВ) В = 0.148 , n = 1.8. Так, a – частинки з енергіями Ea = 5 МеВ пробігають у повітрі відстань 3.51 см, а з енергією Ea = 30 МеВ – 68 см. Відношення лінійних пробігів двох типів частинок, які розпочинають рух у повітрі з однаковими швидкостями, пропорційний відношенню питомих втрат енергії цих частинок:

, (3.5.2.2)


де m1 і m2 – відповідно, маси частинок; z1 і z2 – зарядові числа частинок.

Часто замість лінійного пробігу використовують масовий пробіг зарядженої частки Rm, який виражається у грамах на квадратний сантиметр (г/см2). Чисельно масовий пробіг дорівнює масі речовини, яка розміщена в циліндрі, висота якого дорівнює лінійному пробігу частинки R у сантиметрах, з площею поперечного перерізу – 1 см2 .

, (3.5.2.3)

де ρ – густина речовини в г/см3.

Масовий пробіг зарядженої частинки зручний тим, що він мало залежить від хімічного складу речовини.


        1. 3.5.3 Взаємодія бета-частинок з речовиною

При русі в речовині легкі заряджені частинки втрачають свою енергію. Ці втрати можна поділити на іонізаційні й радіаційні.

При русі легких заряджених частинок у речовині питомі іонізаційні втрати зменшуються із збільшенням їх швидкості до кінетичних енергій, які дорівнюють подвоєний енергії спокою електрона, а потім повільно зростають.

Радіаційні втрати спостерігаються при прискореному русі вільних заряджених частинок в електричному полі ядра. Пролітаючи поблизу ядра, заряджена частинка відхиляється від свого попереднього напрямку під дією кулонівської сили F. Ця сила пов'язана з масою частинки m і її прискоренням a другим законом Ньютона F = ma. Вільний заряд, який рухається з прискоренням a , випромінює електромагнітні хвилі, енергія яких пропорційна порядковому номеру елемента. Оскільки кулонівська сила пропорційна порядковому номеру елемента в таблиці Менделєєва z, то a2 ~ z2/m2 . Отже, радіаційні втрати важких заряджених частинок значно менші радіаційних втрат електронів і позитронів. Із збільшенням енергії електронів їх електричне поле в перпендикулярному напрямку підсилюється, тому радіаційні втрати ростуть пропорційно до зростання кінетичної енергії електронів Ее- . Отже, питомі радіаційні втрати енергії Ее- пропорційні енергії і квадрату порядкового номера речовини:

. (3.5.3.1)


Іонізаційні втрати в електронів переважають в області порівняно невеликих енергій. Із збільшенням кінетичної енергії внесок іонізаційних втрат у загальних втратах енергії зменшується. Оскільки питомі іонізаційні втрати , то відношення питомих радіаційних і іонізаційних втрат k енергії пропорційне

, тобто


, (3.5.3.2)

тут Ее- береться у МеВ.

Енергію електронів, при якій питомі іонізаційні і радіаційні втрати рівні (k = 1), називають критичною. Критична енергія для заліза (z = 26) дорівнює 31 МеВ, а для свинцю (z = 82) - приблизно 9.8 МеВ. Практичний інтерес має не дійсний лінійний пробіг, а ефективний. Він дорівнює товщині шару речовини, яка повністю поглинає електрони. Ефективні масові пробіги Rme моно енергетичних електронів знаходять за емпіричними формулами:

для

для (3.5.3.3)

де Rme вимірюють у грамах на квадратний сантиметр (г/см2); Eе - кінетична енергія електронів у МеВ.

        1. 3.5.4 Взаємодія нейтронів з речовиною


Случайные файлы

Файл
94105.rtf
101315.rtf
34164.rtf
nalog proverka.doc
31101-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.