Кристаллизация, структурно-химическое модифицирование и адсорбционные свойства цеолитов. (физхимия) (149947)

Посмотреть архив целиком

Министерство общего и профессионального образования

Российской Федерации

Пермский государственный технический университет

Химико-технологический факультет

 

 

 

 

 

 

 

Курсовая работа

по курсу дополнительных глав физхимии на тему:

 

Кристаллизация, структурно-химическое модифицирование

и адсорбционные свойства цеолитов.

 

 

 

 

 

Выполнил:

студент группы МАГ-V

Нагорный О.В.

Проверил:

д.т.н. Кетов А.А.

 

 

 

 

 

Пермь,1999

Содержание

 

Введение 2

Структура цеолитов 5

Кристаллизация цеолитов из щелочных силикаалюмогелей 11

Направленный синтез цеолитов 13

Варьирование адсорбционных свойств цеолитов 19

Список использованной литературы 22


Введение

После открытия в конце 50-х гг. каталитических свойств цеолитов начались интенсивные исследования их структуры, свойств и методов получения.

В природе цеолиты образуются в результате гидротермального синтеза. Эффективных способов обогащения пород не существует, поэтому на практике используют только богатые залежи цеолитов.

В промышленных масштабах главным образом используют синтетические цеолиты. Хотя в настоящее время известно свыше 30 природных цеолитов, но только 8 из них (анальцим, шабазит, клиноптилолит, эрионит, феррьерит, ломонтит, морденит и филлипсит), встречающихся в основном в осадочных породах, могут иметь промышленное значение. Трудности связаны с разведкой, изучением и разработкой месторождений. Вообще, во всем мире потенциальный запас пригодных для использования цеолитов достаточно велик.

Уровень современного промышленного производства синтетических цеолитов достигает нескольких сотен тысяч тонн в год и определяется главным образом, потребностями нефтехимической промышленности, где синтетические цеолиты некоторых структурных типов находят широкое применение в качестве катализаторов или их носителей. Также цеолиты широко применяются при сушке, очистке и разделении веществ, а также в качестве ионообменников.

Вместе с тем цеолиты сами по себе являются интересными объектами для научных исследований: они представляют собой пористые тела, характеризующиеся определенной структурой скелета и регулярной геометрией пор (внутрикристаллических полостей и каналов). Важной особенностью цеолитов является возможность варьирования химического состава кристаллов и геометрических параметров (формы и размеров) внутрикристаллических пор, т.е. возможность их структурного и химического модифицирования, что можно осуществлять либо варьируя условия прямого синтеза цеолитов, либо изменяя химический состав кристаллов цеолитов одного и того же структурного типа.

Благодаря сравнительной легкости химического модифицирования цеолитов появляются широкие возможности для осуществления контролируемых изменений структуры и свойств кристаллов. Это обстоятельство делает цеолиты весьма удобными объектами для исследования адсорбционных равновесий, природы адсорбционных взаимодействий, механизма и кинетики каталитических реакций, молекулярно-ситовых эффектов, диффузии молекул в тонких порах контролируемых размеров.

О перспективах все большего практического использования цеолитов говорит обширная патентная и научная литература. По данным [1] число патентов на синтез и применение цеолитов только в США, уже по состоянию на 1973 г., составляло более 2000, а число научных статей по цеолитам, опубликованных к этому же времени, - свыше 7000


Структура цеолитов

При рассмотрении химических и каталитических свойств цеолитов часто достаточно феноменологического описания, однако по-настоящему понять эти явления можно, только детально изучив кристаллическую структуру цеолитов.

Из-за сложности физических свойств цеолитов им трудно дать точное определение. Так один из авторов [2] предлагает называть цеолитами “алюмосиликаты с каркасной структурой, в которой имеются полости, занятые большими ионами и молекулами воды, причем и те и другие характеризуются значительной подвижностью, что обеспечивает возможность ионного обмена и обратимой дегидратации”. Каркасная структура построена из соединенных вершинами тетраэдров, в которых малые атомы (называемые Т-атомами) лежат в центрах тетраэдров и атомы кислорода - в их вершинах. Положения Т в природных цеолитах заняты преимущественно атомами Al и Si, но в синтетических цеолитах их можно заменить на близкие по природе атомы Ga, Ge и P. Роль больших ионов в полостях природных цеолитов выполняют одно- и двухзарядные катионы Na, Сa, K, Mg и Ba, содержание которых зависит от геохимического состава среды минералообразования и распределения элементов между кристаллизующимися минералами. В лабораторных условиях в цеолит можно путем ионного обмена или прямым синтезом ввести широкий набор других катионов. Общая формула цеолита MpDq[Alp+2qSirO2p+4q+2r]sH2O. Поскольку каждая вершина принадлежит двум тетраэдрам, атомов кислорода в каркасе должно быть вдвое больше, чем T-атомов. Чтобы заряд компенсировался, число трехзарядных ионов Al должно быть равно сумме p (число однозарядных катионов) и 2q (удвоенное число двузарядных катоионов).

В таблице 1 приведены свойства основных цеолитов. Из этой таблицы видно, что топология каркасов синтетических цеолитов X и Y аналогична топологии каркаса фожазита, цеолит  имеет, по-видимому, такой же каркас, как маццит. Природные аналоги цеолитов A,L и ZK-5 пока не найдены

Таблица 1

Свойства некоторых цеолитов

Название

Кристаллографические данные

Химический состав

A.

Кубическая, a=12,3 ,

Pm3m (псевдоячейка)

Na12Al12Si12O4827H2O

Шабазит

Ромбоэдрическая, а=9,4 , =94,5; R3m

(Ca,Na2)~2Al4Si8O24*13H2O

Эрионит

Гексагональная,

а=13,3 , с=15,1 ;

P63/mmc

(Ca, K2, Na2)~4Al8Si28O7227H2O

Фожазит

Кубическая, а=24,7 ;

Fd3m

~Na13Ca11Mg9K2Al55Si137O384235H2O

X

Кубическая, а=25,0 

Na86Al86Si106O384264H2O

y

Кубическая, а=24,7 

Na56Al56Si136O384250H2O

Гмелинит

Гексагональная,

а=13,7 , с=10,0 ;

P63/mmc

(Na и др)~8Al8Si16O4824H2O

L

Гексагональная,

а=18,4 , с=7,5 ;

P6/mmm

K2Al9Si27O7222H2O


 

Название

Кристаллографические данные

Химический состав

Маццит

Гексагональная,

a=18,4 , c=7,6 ;

P6/mmc

K2,5Mg2,1Ca1,4Na0,3Al10Si26O7228H2O



То же, но а=18,2 

(Na и др)8Al8Si28O7221H2O

Морденит

Ромбическая, а=18,1 

b=20,5 , c=7,5 ;

Cmcm

Na8Al8Si40O9624H2O

Оффретит

Гексагональная,

а=13,3 , с=7,6 ;

P6m2

KCaMgAl5Si13O3615H2O

ZK-5

Кубическая, а=8,9 ;

P43n

Na30Al30Si66O19298H2O

 

Все выбранные цеолиты имеют широкие поры, в которых после дегидратации могут проникать молекулы. Обменные катионы и алюмосиликатный каркас можно модифицировать химической обработкой, что позволяет регулировать химические силы, действующие на сорбированные молекулы. При правильном выборе условий модифицирования цеолит действует как катализатор, что приводит к химическому превращению адсорбированных молекул в желаемом направлении.

Топология алюмосиликатного каркаса является, пожалуй единственным признаком, по которому можно точно идентифицировать структуру цеолита. Все остальные признаки, например распределение по кристаллографически идентичным местам, сложны и неопределенны.

Для описания топологии желательно предельно упростить атомную модель. Вместо того чтобы указывать расположение четырех больших ионов кислорода (радиус~1,35 ), лежащих в вершинах тетраэдра, удобнее рассматривать положение только центра тетраэдра, занятого малым катионом Al или Si.

 

 

 

 

Рис. на 21 стр в - Рабо Дж. Химия цеолитов и катализ на цеолитах. М.:Мир.1980. Т1. 502с. (Эта книга и др., ниже приведенные, должны быть почти в любой технической библиотеке. Можно отксерить рисунок вклеить в оставленное место над подписью к рисунку и еще раз отксерить целиком страницу. Качество получается такое, как будто весь реферат отпечатан на принтере, включая рисунки.)

 

 

 

 

 

Рис.1. Три способа изображения усеченного октаэдра (содалитовой ячейки) в каркасах алюмосиликатов.

 

Соединенные тетраэдры можно изобразить линией, соединяющей их центры. При этом каркас цеолита будет иметь вид трехмерной сетки, в каждом узле которой соединяются четыре линии. Атомы кислорода лежат вблизи середины каждого отрезка, но не совпадают с ней.

На рис. 1. показаны три способа упрощенного изображения содалитовой ячейки, которая может быть элементом каркаса. На диаграмме а светлыми и темными кружками показаны положения центров атомов кислорода и Т-атомов соответственно. В принятом на рисунке масштабе атомы кислорода имеют в три раза больший размер, чем изображающие их светлые кружки. На диаграмме б такая же ячейка образована алюмосиликатными тетраэдрами, соединенными вершинами. И наконец, на диаграмме в показаны только линии, соединяющие Т-атомы. При таком упрощении ячейка представляет собой усеченный октаэдр, который является одним из архимедовых многогранников.


Случайные файлы

Файл
44692.doc
49376.rtf
17106.rtf
93944.rtf
2699.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.