Электрические свойства сплавов типа твердых растворов (149885)

Посмотреть архив целиком

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО

ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ

ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ


Кафедра физики металлов











Курсовая работа

Электрические свойства сплавов типа твердых растворов












Выполнил: студент группы М-333

Лукьянов А.А.

Проверил: профессор

Заболеев – Зотов В.В.









Волгоград, 2000 г.

Содержание

Введение …………………………………………………………………………………………… 3

Электросопротивление твердых растворов ………………………………………………………4

Неоднородные твердые растворы ………………………………………………………………..12

Влияние ближнего порядка на электрическое сопротивление………………………………....15

Литературный обзор ………………………………………………………………………………18

Литература ………………………………………………………………………………………...19

Введение

При термическом, механическом или радиационном воздействиях на металлы и сплавы их свойства претерпевают значительные изменения. Еще со времен работы Курнакова, Жемчужного, Заседателева известно об изменении физических свойств при возникновении сверхструктуры в твердых растворах. Многочисленными последующими исследованиями было установлено, что качественная картина электросопротивления сплавов, в которых существует данный порядок, при отжиге и деформации сходна с картиной для чистых металлов. Поэтому еще сравнительно недавно было широко распространено мнение, что поведение твердых растворов при обработке должно подчиняться тем же закономерностям, какие характерны для чистых металлов. Это мнение подкреплялось большим числом экспериментов, проведенных на таких сплавах, как CuZn, CuAl, CuGa, Cu – Ge, AgZn. Поэтому, когда Томасом было обнаружено, что электрическое сопротивление при отжиге однофазных деформированных сплавов, у которых хотя бы один из компонентов является переходным металлом, не падает а растет, это было воспринято и им, да и другими исследователями как проявление возникновения при отжиге нового, особого R-состояния. Томас предположил, что в этом случае происходит какой-то неизвестный фазовый переход, при котором атомы образуют некие комплексы, вследствие чего заполняются ранее не заполненные d-оболочки и уменьшается концентрация носителей электричества.

Многочисленными исследованиями, как теоретическими, так и экспериментальными, показано, что в действительности рост электрического сопротивления при последеформационном отжиге твердых растворов вызывается появлением либо различных форм ближнего порядка, либо неоднородности, приводящим к изменению электронной структуры, а также сечения рассеяния электронов, какие либо признаки особого k-состояния ни в одной из работ по исследованию структуры обнаружены небыли.

Электросопротивление твердых растворов


При образовании твердого раствора электропроводность металла снижается. Это является общим правилом даже в том случае, когда в металле А с низкой электропроводимостью растворяется металл В с высокой электропроводимостью. При размещении в пространственной решетке растворителя А чужих атомов растворенного вещества В электрическое поле решетки растворителя искажается и рассеяние электронов увеличивается.

Повышение электросопротивления при образовании твердого раствора (легировании) может быть весьма значительным. Например, введение 0.2 ат. % As или Fe в золото приводит к повышению электросопротивления последнего при 00 С в 2 раза..

Искажение решетки является не единственной причиной роста электросопротивления твердых растворов. Электрические свойства твердого раствора обусловлены также химическим взаимодействием компонентов.

Как показали Н.С. Курнаков и его ученики, в непрерывном ряду твердых растворов электросопротивление тем больше, чем дальше по своему составу сплав состоит из чистых компонентов. Максимум сопротивления в двойных сплавах, как правило, лежит при 50 % (ат.). При этом он может в несколько раз превышать сопротивление компонентов. Сопротивление приблизительно пропорционально соотношению С(1-С), где С – атомная доля одного из компонентов.


Рис. 1

Зависимость удельного электросопротивления от сплавов Ag-Au от состава

Рис. 2

Удельное электросопротивление сплавов Cu, Ag и Au c Pd















На рисунке 1 приведена зависимость сопротивления Ag-Au сплавов от концентрации при абсолютном 00С и 1000 С. Твердые растворы ферромагнетиков и сильно парамагнитных металлов ведут себя по-иному. Их max сопротивление может соответствовать концентрации, отличной от 50% (ат.).

Например, сопротивление растворов благородных металлов переходных (при больших концентрациях) аномально высоко (рис. 2). Вследствие того, что валентные электроны могут переходить на глубже лежащие недостроенные f- или d-уровни переходных металлов и число электронов, создающих электрический ток уменьшается.

Такой переход электронов следует рассматривать как усиление химического взаимодействия компонентов раствора, если среди них имеется хотя бы один переходный металл.

Сказанное относилось к твердым растворам замещения. Установлено, что в твердых растворах внедрения тантал-дейтерий и тантал-водород электросопротивления также меняется пропорционально С(1-С).

При нагревании твердых растворов их сопротивление как правило растет, однако не так значительно, как у чистых металлов. Температурный коэффициент всегда ниже, чем для чистых металлов, и меняется в зависимости от состава аналогично проводимости.

Понижение температурного коэффициента электросопротивления слабо концентрированных твердых растворов объясняется следующим образом.

Согласно правилу Маттиссена-Флеминга, электрическое сопротивление слабо концентрированного твердого раствора

(1) 


- сопротивление основного компонента (растворителя);

 - остаточное сопротивление, равное с, где с – атомное содержание примеси, - добавочное сопротивление на 1% (ат.) примеси.

Из этого правила следует, что электросопротивление сплава складывается из 2-х составляющих:

1) сопротивление растворителя, которое зависит от температуры и повышается вместе с ней и

2) из составляющей, обусловленной присутствием в основной решетке посторонних атомов, которые искажают эту решетку и главным образом нарушают периодичность электрического потенциала решетки, благодаря чему электросопротивление повышается. Этот фактор – второе слагаемое в формуле (1) – не зависит от температуры, его влияние при нагреве не повышается.

Отсюда следует, что ddT для данного ряда твердых растворов (при одном и том же растворители) является величиной постоянной, не зависящей от концентрации примеси, и температурный коэффициент электросопротивления T = (ddT)(1/T) тем меньше, чем больше T или чем меньше проводимость при постоянной температуре T в данном ряду твердых растворов.

Правило Матиссена – Флеминга было сформулировано еще в 1860 г. Однако в последнее время во многих металлических системах, в том числе в немагнитных разбавленных растворах, обнаружили некоторое отклонение от этого правила (зависимость остаточного сопротивления от температуры). При исследовании отклонений от правила Матиссена электросопротивление твердого раствора выражают в виде суммы трех слагаемых:

  1.       

где - величина отклонения от правила Маттиссена, зависящая от температуры и от концентрации растворенной примеси.

При увеличении концентрации примеси отклонения от правила Маттиссена увеличивается, причем зависимость от С (С- концентрация примеси) одинакова для разных растворенных элементов при одном растворителе.

Добавочное сопротивление С в формуле (1) обусловлено рассеянием электронов ионами атомов, растворенных в основном металле. Их нарушающее действие такое же, как и действие отклонения атомов растворителя от своих центральных положений при тепловых колебаниях. При абсолютном нуле = 0, остается лишь , то есть остаточное сопротивление.

Последнее обстоятельство нашло широкое практическое применение для оценки чистоты металла по величине его остаточного электросопротивления при абсолютном нуле.

Присутствие в простых (непереходных) металлах очень небольших (менее 1% (ат.)) примесей переходных металлов, ионы которых обладают собственным магнитным моментом, приводит к появлению при низких (в окрестности температур жидкого гелия) температурах min на кривых температурной зависимости электросопротивления. Это явление известно под названием аномалии Кондо а температура min называется температурой Кондо.

Обычно аномалия Кондо наблюдается в разбавленных растворах переходных элементов – хрома, марганца, железа в металлах IB группы (Au, Cu, Ag).

В сплавах редкоземельных металлов аномалия Кондо проявляется и в концентрированных растворах, например в сплавах Y-Ce, содержащих до 80% (ат.) Ce, и даже в интерметаллических соединениях церия: Ce3Al, CeAl2, CeAl3, CeAl

При сравнении твердых растворов на базе одновалентного растворителя (Cu, Ag или Au) обнаружено, что T уменьшается с повышением валентности растворенного элемента, то есть с лева на право по периоду таблицы Менделеева.

Из экспериментов следует, что возрастание сопротивления, вызванное содержанием одного атомного процента различных металлов, кроме переходных, растворенных в одном и том же растворителе, зависит от валентности растворителя и растворенных металлов. Чем больше различие между их валентностями, тем больше добавочное сопротивление, то есть

где a и b – константы; Z и Zp – валентности легирующего компонента и металла-растворителя.

Из теории коллективизированных электронов также следует, что остаточное электросопротивление возрастает пропорционально квадрату разности валентностей, кроме того, остаточное сопротивление обратно пропорционально атомному объему растворителя.


Случайные файлы

Файл
138494.rtf
118777.rtf
69246.rtf
ref-15828.doc
19959-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.