Экспериментальное определение тока шнурования в пропанокислородных смесях (LITOBZOR)

Посмотреть архив целиком

ГЛАВА I

ЛИТЕРАТУРНЫЙ ОБЗОР

1.1 Ионизация в зоне горения углеводородного топлива

За последние годы появилось много работ по определению концентрации ионов в пламенах при введении в горючую смесь легкоионизируемых добавок для повышения электропроводности продуктов сгорания. Данных же по ионизации в пламенах без присадок очень мало. Ограниченное число работ затрудняет идентификацию положительных ионов в зоне горения. Что касается носителей отрицательных зарядов, то установлено, что ими являются свободные электроны.

Экспериментальный материал [9] по исследованию ионизации пламени недостаточен для того, чтобы судить о величине концентрации ионов в различных зонах пламени, особенно потому, что большинство работ по этому вопросу выполнено на низкотемпературных пламенах [10]. Однако на основании проведенных исследований можно сделать ряд важных выводов. Прежде всего ряд авторов отмечает, что в пламенах при горении углеводородного топлива концентрация ионов намного превышает равновесную термическую ионизацию, причем расхождение может достигать величины нескольких порядков. Хотя в зоне реакции нельзя ожидать равномерного распределения выделяемой энергии по различным возможным формам, т. е. равновесного состояния, все же невозможно объяснить только отсутствием равновесия наблюдаемую величину концентрации ионов, равную 1012 см-3, вместо равновесного значения 106 см-3. Кроме того, аномально высокая концентрация ионов присуща лишь углеводородным топливам и отсутствует, например, в пламенах Н2 или СО, причем для СН4 отмеченное расхождение проявляется в меньшей степени.

Механизм образования ионов удобно исследовать, применяя специальные прямоугольные горелки, образующие плоское пламя при пониженных давлениях. Процесс горения в пламенах такого типа протекает стабильно, без заметных колебаний, что очень важно как для спектроскопических исследований, так и для измерения тока электропроводимости.


Ниже рассматриваются некоторые экспериментальные работы по ионизации в пламенах сначала диффузионных, а затем предварительно перемешанных смесей.

Кинбара и Накамура [1] одновременно со спектроскопическими исследованиями изучали электропроводимость диффузионного пламени городского газа и некоторых других углеводородных топлив на горелке Бунзена при атмосферном давлении. Электропроводимость исследовали с помощью двойного зонда со встречным расположением электродов. Температуру измеряли Pt/PtRh микротермопарой.

Характер распределения проводимости (а следовательно, и концентрации свободных электронов) по радиусу поперечных сечений пламени представлен на рис. 1. На этом же рисунке показано соответствующее распределение температуры.

Сопоставляя характер изменения проводимости и температуры, интересно отметить, что максимальный ток проводимости располагается в районе сечения III, после чего проводимость резко снижается. Если бы причиной ионизации были случайные примеси легкоионизируемых элементов, то подобный характер изменения должна была бы иметь и температура. Однако температура по высоте пламени непрерывно растет вплоть до последнего сечения VI.

Основная часть работ по исследованию ионизации посвящена пламени предварительного перемешивания топлива и окислителя, поскольку у таких пламен наиболее изучена химическая кинетика реакций горения. Познать механизм образования ионов можно, лишь исследовав реакционную зону, размеры которой весьма малы (порядка долей мм).

Одной из ряда значительных работ по исследованию ионизации пламени являются эксперименты Аравина, Семенова и Соколика [11,12], проведенные на сферической бомбе с центральным зажиганием и приспособлениями для фоторегистрации пламени и оптической записи давления. Топливом служил пропан или водород в смеси с воздухом. В этих опытах была поставлена задача выяснения связи между температурой и ионизацией, получение данных о величине концентрации ионов, размеры зоны реакции и времени реакции ламинарного пламени.

Выводы, к которым пришел Аравин, сводятся к следующему:

  1. Ионизационный ток резко возрастает, затем снижается при прохождении через ионизационный промежуток зоны горения. Поскольку температура газа за зоной горения непрерывно повышается, сделан вывод о нетермической природе ионизации в зоне пламени, об ее связи с химическим процессом превращений.

  2. В случае горения пропана ионизационный ток пламени заметно убывает по мере удаления от точки зажигания. Что касается температуры пламени, то она непрерывно возрастает по мере удаления от точки зажигания.

  3. На основе расчета температуры с учетом различных видов диссоциации были вычислены значения ионизационного тока по уравнению Саха, для пропано-воздушного пламени. Сопоставление расчетных значений с экспериментальными показало, что последние на несколько порядков больше значения равновесного термодинамического тока. Отношение iоп/ip составляет 102 - 107.

  4. Турбулентный характер сгорания отражается в специфических пульсациях кривой ионизационного тока, резко отличающих ее от соответствующей кривой ламинарного пламени.

  5. Аномально высокая ионизация во фронте пламени открывает принципиальную возможность выделения в факеле зоны, где осуществляются химические превращения, т. е. выделение собственно зоны горения.

Аналогичный вывод о неравновесности ионизации в пламени получен Калькоттом и Кингом [4], которые рассмотрели ионизацию и температуру по длине плоского пропано-воздушного пламени.


В работе Понкелета, Берендсена и Ван-Тиггелена [2] топливо (ацетилен) предварительно смешивалось с кислородом и подавалось в зазор между коаксиально расположенными цилиндрами, электрически изолированными друг от друга. Содержание азота в смеси колебалось в пределах 71-79%.

Концентрацию электронов определяли методом сопротивления фронта пламени. Некоторые результаты работы даны на рис.2, где концентрация электронов и температура пламени даны в функции соотношения С2Н22Н22 при двух концентрациях азота (71 и 76%). Концентрация электронов по рассмотренным режимам менялась в пределах 1010 - 1011 см-3, причем ее максимальное значение соответствовало максимальной скорости горения.

Важные результаты получены Иноземцевым [3] по исследованию влияния различных факторов на ионообразование в пламенах смесей с воздухом пропана и бензина. На рис. 3. приведены результаты измерения концентрации электронов двойным зондом в зависимости от коэффициента избытка воздуха во фронте горения углеводородного топлива. Пламя горит при атмосферном давлении без предварительного подогрева горючей смеси.


Так же, как и работе Понкелета и других, отчетливо виден максимум концентрации электронов при несколько обогащенной смеси, т. е. при максимальной скорости горения (a=0.9-0.95). Для этого режима горения концентрация электронов во фронте горения равна 2.25*107 см-3, скорость образования электронов 17.5*1017 см-3 сек-1, а коэффициент рекомбинации равен 3*103 см3 сек-1.

В упоминавшейся ранее работе Кинбара и других [1] изучалось горение предварительно перемешанных смесей городского газа с воздухом на горелке Бунзена. Ток проводимости измеряли в нескольких сечениях вертикально расположенного факела; в тех же сечениях определяли и распределение температур.


Результаты измерений представлены на рис. 4. Положения максимумов ионизации и температуры совпадают лишь в самых первых сечениях, примыкающих к устью горелки. По мере удаления от устья горелки между ними наблюдается большое расхождение. Максимумы тока проводимости соответствуют образующей внутреннего светящегося конуса горения (фронту горения). Вызывает сомнение распределение тока проводимости в сечении II - наличие заметной концентрации электронов в объеме внутреннего конуса горения.




1.2. Диффузный электрический разряд

Интенсификация пламени путем создания в продуктах сгорания природного газа с воздухом мощного идеально диффузного электрического разряда представляет научный и практический интерес [13]. Очевидно, что наиболее важным фактором, противодействующим сжатию шнура разряда в нить, является надлежащая предварительная обработка газа. Высокая турбулентность как в зоне разряда, так и на подходе к ней также помогает предотвратить нитевой режим дуги; влияние этого фактора особенно отчетливо проявляется при высоких значениях электрической мощности. Диффузно интенсифицированное пламя дает потенциальные технические и экономические преимущества по сравнению с другими источниками высокого потенциального тепла, что может найти большое применение в химической, металлургической и других отраслях промышленности.

Работа Карловица [5] показала, что к пламени можно подвести в виде высоковольтного разряда сравнительно слабого тока большие количества электрической энергии, рассеивающееся по всему объему пламени.

При обычных температурах газы являются очень плохими проводниками электрического тока, так как они содержат очень небольшие количества электронов и положительных ионов. По мере повышения температуры многоатомные газы становятся все менее стабильными и диссоциируют на составляющие их атомы. Только при очень высоких температурах (выше 5000 К) ионизация таких элементов, как О2, N2, H2 и С, достигает степени, достаточной для придания газу сколько-нибудь значительной электропроводности.

В области температур от 5000 до 20 000 К степень ионизации обычных газов становится весьма чувствительной к изменениям температуры, в результате чего с повышением температуры электропроводность газов увеличивается на много порядков. Поэтому говорят, что газы имеют большой положительный температурный коэффициент электропроводности.

Вследствие большого положительного коэффициента обычный газовый проводник по самой своей природе представляет собой нестабильную активную нагрузку и не может быть непосредственно подключен к зажимам источника постоянного напряжения без прихода в возможное короткое замыкание. Последовательно с обычным газовым проводником для ограничения тока, протекающего через него, должно быть включено балластное сопротивление, т. е. достаточно большое дополнительное активное сопротивление или катушка индуктивности. Именно к этому и сводится обычно применяемый метод стабилизации электрической дуги.


Случайные файлы

Файл
73264.rtf
32278.rtf
176199.rtf
29215-1.rtf
108167.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.