Раздел 4. Основы специальной теории относительности

и релятивистская механика.


4.1. Краткие исторические сведения.

Механика, сформулированная Ньютоном в 1687 году в его знаменитых «Принципах» и существенно развитая в 18 веке Эйлером (1707-1783) ,Клеро (1713-1765) и Даламбером(1717-1783), а в конце 18 века - начале19 века -Лагранжем (1736-1813), Лапласом (1749-1827) и Пуассоном (1781-1840) и, наконец, в 19 веке - Гамильтоном (1805-1865), Якоби (1804-1851) и Пуанкаре (1854-1912), достигла столь выдающихся успехов и получила столь широкое признание, что долгое время, вплоть до последней четверти 19 века, ее основы никем не подвергались никакой критике.

Механика стала первой наукой современного естествознания, которая получила мощное и законченное развитие на основе того экспериментально - математического метода познания природы, который от Галилея еще в 17 веке приняло современное естествознание и благодаря которому оно достигло столь поразительных и выдающихся успехов.

Красивое здание механики было столь совершенным, что и все остальные физические науки (об электрических, магнитных, оптических, тепловых и др. физических явлениях) долгое время, особенно весь 18 век и даже до последней четверти 19 века, пытались строить по образу и подобию механики.

Возникло даже особое течение в натурфилософии - механистическое мировоззрение, которого придерживались многие, можно сказать, подавляющее большинство, ученых конца 19 века. Это мировоззрение ставило своей целью сведение всех физических явлений к проявлению простых механических законов.

Вместе с тем, очень большие успехи, достигнутые в 19 веке электродинамикой - открытие закона электромагнитной индукции, электрического мотора и трансформатора, электромагнитной природы света, электромагнитных волн радио- и СВЧ- диапазона - и термодинамикой - открытие общефизического закона сохранения энергии, паровой машины и двигателя внутреннего сгорания, ракетного двигателя, а также фантастические успехи атомно-молекулярного учения о строении физического вещества - открытие электрона в самом конце 19 века, а также структуры атома, открытие атомного ядра, ядерной физики и физики элементарных частиц - все это уже к 1926-27 гг., как снежный ком, смело механистическую философию природы и заменило ее правильным пониманием хотя и существенной, но все же в целом ограниченной роли механики в физической науке, которая в 20 в. Нам всем известна со школы.

Но это произошло в 20 в., а мы хотим заняться сейчас историей исследований конца 19 в. - начала 20 в., зародившихся на основе критики фундаментальных основ ньютоновской механики, связанных с появлением теории относительности и релятивистской механики.


А. Проблема ньютонова абсолютного пространства и существования в природе класса инерциальных систем отсчета.


Начиная с 1872г. Э.Мах первым в истории науки не побоялся публично выступить с критикой самых фундаментальных основ механики Ньютона - в то время прочно утвердившейся и незыблемой теории.

Мах справедливо указал на отсутствие у Ньютона четких определений понятий массы и силы, на очевидную логическую зависимость первого закона от второго закона, на неясности представлений Ньютона об абсолютном движении и связанных с ним его представлений об абсолютном пространстве и абсолютном времени.

Фундаментальная идея механики Ньютона о том, что в природе существует «абсолютное движение» - действительно у Ньютона сформулировано очень нечетко. В этих представлениях Ньютона, однако, получил отражение в его механике тот важный экспериментальный факт, что в природе по какой-то причине существуют привилегированные, т.е. выделенные в отношении механических явлений, но полностью эквивалентные друг другу - так называемые инерциальные системы отсчета, движущиеся относительно друг друга прямолинейно и равномерно, с постоянными скоростями. Одна из этих систем, по Ньютону, фактически и является той самой абсолютной системой отсчета, относительно которой Ньютон и отсчитывал свое абсолютное движение.

Таким образом, инерциальной системой отсчета в механике Ньютона, строго говоря, называется система отсчета, движущаяся прямолинейно и равномерно, с некоторой постоянной скоростью, относительно абсолютной системы, хотя самой абсолютной системе строгого определения и не дается.

Следует, однако, заметить, что хотя сам Ньютон четко абсолютное пространство и связанную с ним абсолютную систему отсчета и не определил, но если внимательно проследить историю предваряющих исследования Ньютона исследований Галилея и Гюйгенса по движению земных тел в поле тяжести Земли и Коперника и Кеплера по движению основных небесных тел - Солнца, Луны, и пяти главных планет, из которых, собственно говоря, непосредственно и возникла механика Ньютона, в частности, его решение самой основной задачи небесной механики - так называемой задачи Кеплера о движении планеты вокруг Солнца по эллиптической орбите, то нетрудно практически безошибочно установить, что под абсолютной системой отсчета Ньютон фактически понимал коперниковскую гелиоцентрическую систему отсчета, а под абсолютным пространством - межпланетное пространство Солнечной системы. Именно эта система была принята Ньютоном во всех его успешно решенных механических задачах - о движении Земли, Луны и планет, об океанских приливах и отливах на поверхности Земли и т.д.

Исторический вопрос о существовании истинной системы отсчета, самой естественной для математического описания механических движений небесных тел - Солнца, Луны и пяти главных планет был поставлен в 16-17 вв., на заре становления современного научного мировоззрения, И вопрос этот был окончательно решен уже основателем современного естествознания Н. Коперником (1473-1543) в 1520-30 гг. И в его знаменитом сочинении «Об обращениях небесных сфер», которое начало печататься за несколько дней до его смерти в 1543 г.

Фактически Коперник решил основную кинематическую задачу нашей Солнечной планетной системы, - нашел самую удобную систему координат, жестко связанную с межпланетным пространством, для описания видимого нами достаточно сложного движения Солнца, Луны и главных планет среди неподвижных звезд.

Именно эта «абсолютная» система отсчета и была принята неявно Ньютоном в его «Принципах» при формулировке основ механике, при решении им задачи Кеплера и других астрономических задач, а также при решении задач о движении тел на Земле.

Ньютон свой выбор указанной абсолютной системы отсчета не формулировал, однако, явно, заявив без должных пояснений довольно туманно, что в природе существует абсолютное время, абсолютное пространство и абсолютное движение, что именно абсолютное движение тел и является истинным предметом изучения созданной им механики с ее тремя законами.

Здесь следует подчеркнуть, что особенно удивительно то обстоятельство, что специальная, выделенная по своим механическим свойствам, инерциальная система отсчета в природе имеется не одна, а существует целый класс - бесконечное множество подобных систем, по своим механическим свойствам действительно полностью эквивалентных друг другу, Все они движется поступательно равномерно и прямолинейно, с постоянными скоростями друг относительно друга. По механическому поведению движущихся в них тел все эти инерциальные системы отсчета принципиальным образом отличаются от остальных систем отсчета - так называемых неинерциальных систем.

Что существует множество эквивалентных особенных систем отсчета, - знал уже Галилей, на экспериментальные исследования которого опирался Ньютон в своих «Принципах». Именно Галилей открыл механический принцип относительности, согласно которому, производя чисто механические эксперименты в рамках какой-нибудь одной инерциальной системы отсчета, невозможно определить факт движения этой системы отсчета относительно других инерциальных систем. В инерциальных системах отсчета идентичные по постановке механические опыты всегда одинаковые результаты.

Галилей сформулированный им механический принцип относительности использовал, как известно, для снятия наивных возражений против системы Коперника, исходящих от перпатетиков, сторонников Аристотеля, утверждающих, что если бы Земля двигалась, то находящиеся на ней тела оторвались бы от ее поверхности и отстали бы от нее. Галилей справедливо заявил, что никакие механические эксперименты, производимые на поверхности Земли, движущейся в межпланетном пространстве вокруг Солнца равномерно и прямолинейно, не могут установить факт движения Земли.

Впрочем, не совсем правильно утверждать, что Земли движется прямолинейно и равномерно. Земля вращается вокруг своей оси с угловой скоростью 0.000073 1/с; кроме того, ее движение по примерно круговой орбите вокруг Солнца совершается со средней линейной скоростью 30 км/с, что соответствует угловой скорости 0.0000002 1/с, Само Солнце движется со скоростью 220 км/с обращаясь вокруг центра нашей галактики, что соответствует угловой скорости 0.00000000000000088 1/с. Ввиду исключительной малости всех этих угловых скоростей, в очень хорошем приближении можно считать, что Земля движется через пространство поступательно равномерно и прямолинейно с постоянной скоростью 30 км/с.

В отличии от Ньютона Э. Мах пытался объяснить физическую природу наличия в природе особых механических свойств у инерциальных систем отсчета - он справедливо заметил, что одна из инерциальных систем - самая главная, фактически и определяющая ньютоново абсолютное пространство - это действительно физически выделенная для нас, как людей на Земле, система отсчета, - связанная с небом неподвижных звезд, т.е. с межпланетным пространством, от которой мы никогда и ни при каких обстоятельствах не можем абстрагироваться.

Такое разъяснение Махом загадки природы об инерциальных системах отсчета, кажется достаточно убедительным, хотя и порождает вопросы. Не ясно, в частности, почему столь удаленные от нас объекты - звезды могут столь существенно влиять на движение тел на Земле и Земли вокруг Солнца в нашей Солнечной системе.


В. Проблема светоносного эфира и существования на Земле эфирного ветра.


Вопрос существования в природе целого класса механически эквивалентных инерциальных систем отсчета и о наличии среди них одной, самой главной - абсолютной системы, или, как мы объяснили, коперниковской системы, жестко связанной с межпланетным пространством и небом неподвижных звезд, по Маху воплощающим в себе абсолютное пространство Ньютона, в котором движется Земля, Солнце, Луна, планеты и их спутники, нельзя ограничить исключительно механическими рамками, как впрочем мы пока что это делали.

Это, разумеется, общефизический вопрос: ведь на Солнечную систему нельзя смотреть просто как на чисто механическую систему материальных точек, подчиняющуюся исключительно законам ньютоновской механики. Кроме механических, существует огромное число других чисто физических явлений, немеханической природы, постоянно происходящих в Солнечной системе. Во всяком случае, даже в рамках чистой небесной механики мы не можем абстрагироваться от света, так как посредством света, приходящего к нам от Солнца, Луны, планет и их спутников, мы вообще можем судить о существовании этих небесных тел и делать заключения об их механическом движении.

Как распространяется свет в межпланетном пространстве, как он доходит от Солнца до нас, - ведь межпланетное пространство практически совершенно пусто, в нем нет вещества, которое нас окружает здесь на Земле, - это очень существенный вопрос.

С момента зарождения физической оптики, т.е. еще 17 века, когда зародилась и механика, сразу возникли две взаимоисключающие теории света. С именем Ньютона связывают корпускулярную теорию, в которой свет мыслится как поток быстро летящих маленьких телец - корпускул, причем считается, что все корпускулы в потоке имеют одинаковую скорость с - скорость света. С именем Х. Гюйгенса связывают волновую теорию, в которой свет представляется в виде волн, наподобие звуковых волн в воздухе, являющихся возбуждениями некоторой упругой очень тонкой сплошной среды - эфира, при этом скорость света с считается скоростью распространения волн в этой среде.

Практически с самого начала оптических исследований по волновой теории света было принято, что световые волны определенно не являются колебаниями или возмущениями обычной материальной среды, как звуковые волны - колебаниями воздуха. В отличие от звуковых волн световые волны могут распространяться и в сильно разреженных материальных средах и даже в пустоте. Свет от Солнца до Земли проходит через пустое межпланетное пространство между Солнцем и Землей и другими планетами.

Различие звуковых и световых волн легко проиллюстрировать следующим простым экспериментом


Звонящий будильник помещают под стеклянный колокол, из которого насосом выкачивают воздух. По мере удаления воздуха из - под колокола звук от будильника становится все слабее и слабее, пока не пропадет совсем. Если открыть кран и впустить обратно под колокол воздух, то громкий звук будильника будет снова слышен. При всех этих манипуляциях, однако, мы все время видим будильник через стенки колокола, а следовательно, световые волны в отличие от звуковых могут распространяться и в пустом пространстве под колоколом, фактически лишенном воздуха.

Скорость света в пустоте (впрочем, как и в других прозрачных средах - в воздухе, воде, стекле и т.д.) огромна. Она равна 300.000 км/с. О. Ремером, который определил ее из наблюдений вариаций времен последовательно наблюдаемых затмений спутника Юпитера, и в начале 18 века в 1728 г. Дж. Д. Брэдли, который нашел ее из измерения угла аберрации для нескольких звезд, расположенных вблизи полюса эклиптики. Оба измерения - астрономические, т.е. В них определялась скорость света в межпланетном пространстве. Оба они дали примерно 300.000 км/с.

Так как свет, по представлениям волновой теории, является колебаниями, т.е. Возмущениями неподвижно покоящегося эфира, то естественно было считать, что фактически и было сделано, что абсолютная система отсчета Ньютона - это как раз та самая система, в которой невозмущённый световой эфир покоится.

Естественно было предполагать, что эфир заполняет всё пространство между Солнцем и планетами, а так как с этим пространством уже была связана абсолютная система отсчёта Ньютона, относительно которой Ньютон отсчитывал абсолютное движение, то представлялось вполне естественным предположение, что эфир покоится в этой системе отсчёта.

Представление об эфире как об особой тонкой гипотетической среде, заполняющей всю нашу Солнечную систему и всё межпланетное пространство в ней, существенно обогащало ньютонову чисто механическую небесную механику, изложенную в его «Принципах», в которой интерес проявился только к механическим, а точнее - геометрическим характеристикам движения планет и их спутников, под действием сил всемирного тяготения, в ньютоновой абсолютной системе отсчёта.

Одновременно с представлением о покоящемся эфире в межпланетном пространстве возникал вопрос о возможности измерения немеханическим способом скорости Земли, движущейся равномерно прямолинейно с постоянной скоростью в неподвижном эфире, т.е. с помощью не механических, а оптических экспериментов. Согласно принципу относительности Галилея, механические эксперименты не позволяют этого сделать. Возникла, однако, теперь надежда, что оптические эксперименты как раз и позволят какие-нибудь эффекты, в которых проявлялась бы указанная скорость. Всё дело только в том, чтобы изобрести какой-нибудь такого рода эксперимент.

Вся эта проблема об измерении скорости Земли с помощью чисто оптических, а позднее также и электродинамических экспериментов, производимых на поверхности Земли, известна в истории науки под названием проблемы измерения «эфирного ветра».

В теории этого ветра, с самого начала, приходилось выбирать одну из двух гипотез, известных под именами гипотез Френеля и Стокса.


Гипотеза Френеля (1818 г.)

Земля движется сквозь неподвижный эфир, который вовсе не увлекается ею или увлекается очень слабо, и поэтому наблюдатель на Земле должен ощущать и регистрировать натекание эфира на Землю, т.е. «эфирный ветер», измеряя скорость которого можно определить «абсолютную скорость» Земли в ньютоновом абсолютном пространстве.


Гипотеза Стокса (1845 г.)

Земля практически полностью увлекает с собой примыкающий к ней эфир, подобно шару, движущемуся с постоянной скоростью в вязкой неподвижной жидкости, который увлекает примыкающую к его поверхности часть жидкости, и никакого «эфирного ветра», по крайней мере на самой поверхности Земли, а скажем, не высоко в горах, наблюдаться не должно.



Обе гипотезы - Стокса и Френеля - о взаимодействии эфира с движущимся в нём телом - оказались в состоянии количественно объяснить явление астрономической аберрации звёзд и отрицательные результаты оптических экспериментов, произведённых на Земле с целью измерения скорости Земли в межпланетном пространстве. Оптические же явления, наблюдаемые в движущихся прозрачных телах на Земле, смогла объяснить только гипотеза Френеля.

Первую попытку измерить скорость эфирного ветра предпринял Араго в 1810 г. Он решил обнаружить влияние движения Земли на преломление света, идущего от звезды. С этой целью он измерял разности зенитных углов одной и той же звезды, наблюдаемой в телескоп непосредственно и через призму, т.е. попытался наблюдать изменение угла преломления луча света от звезды к призме, когда Земля (а значит, и призма) двигалась к звезде и (через полгода) - от звезды. Араго ожидал измерить угол отклонения, равный, по его оценке, 2’.Но опыты дали отрицательный результат. И тогда Араго обратился к Френелю с просьбой объяснить этот неожиданный для него факт. В 1818 г. было опубликовано письмо Френеля к Араго, в котором Френель с единых позиций нашёл объяснение и отрицательного результата опыта Араго, и объяснение астрономической аберрации.

Хотя Френель понимал, что допущение полного увлечения эфира движущейся Землёй легко объясняет отрицательный результат опыта Араго, он его не принял, так как должен был объяснить также и результат опыта Брэдли по наблюдению аберрации звёзд. Поэтому Френель, следуя предложению Юнга 1804 г., в основу своей теории взял допущение о неподвижном, практически не увлекаемом движущейся Землёй эфире (так как показатель преломления n воздуха очень близок к единице). Стеклянная призма Араго (показатель преломления стекла n» 1,3), однако, по предположению Френеля частично увлекала эфир. Френель теоретически вывел значение коэффициента увлечения, равное 1-1/n2, где n-показатель преломления стекла призмы. При таком значении коэффициента увлечения Френель смог объяснить и отрицательный результат опыта Араго, и опыта Брэдли по аберрации.

Физо в 1856 г. удалось измерить в земных условиях не только скорость света в воздухе (практически совпадающую со скоростью в пустоте),но и скорость света в воде, движущейся с некоторой заданной скоростью V. Эксперимент состоял в изменении смещения интерференционных полос в интерферометре, в плечи которого были помещены две трубы с прозрачными торцами и с текущей по ним в противоположных направлениях со скоростью V водой.

Эксперимент Физо показал, что наблюдаемый сдвиг интерференционных полос соответствовал скорости света в движущейся воде относительно неподвижных стенок труб, равной

Ccp.=c/n±v(1-1/n2),

где знак плюс соответствует движению светового луча и воды в одинаковом направлении, минус -в противоположных, n-показатель преломления воды.

Попытками измерить скорость эфирного ветра на движущейся Земле занимались многие крупные физики в последней четверти XIX в., проводившие для этого различные оптические и электродинамические эксперименты.

Скорость света в пустоте равна 300 000 км/c. Скорость движения Земли по своей орбите равна 30 км/с. Следовательно, v/c=0,0001, v2/c2=0,00000001; речь идёт об очень малых эффектах.

В 1871 г. Майкельсон, а в 1878 г. Майкельсон и Морли произвели первый, ставший впоследствии знаменитым эксперимент второго порядка малости по v/c - эксперимент Майкельсона, который потом неоднократно был повторен другими исследователями.


Оптический прибор - знаменитый интерферометр Майкельсона - размещался на тяжёлой каменной плите, которая плавала на ртути в бассейне в подвале здания. Ориентируя этот прибор либо плечом L1 либо плечом L2 вдоль направления движения Земли, не удалось наблюдать какого-либо различия в его показаниях (это различие должно было выразиться в смещении интерференционных полос, наблюдаемых в зрительную трубу), т.е. не удалось измерить скорость V движения Земли в межпланетном пространстве.


C. Проблема правильной физической интерпретации преобразований Лоренца.


Проблема измерения скорости эфирного ветра в оптических экспериментах получила новое своё развитие в последней четверти XIX в., когда было открыто, что свет имеет электромагнитную физическую природу, что оптика является только частью другой более фундаментальной и более глубокой физической науки-электродинамики.

Основы электродинамики сформулировал Максвелл в своём знаменитом “Трактате” в 1873 г., играющем такую же основополагающую роль в электродинамике, как «Принципы» Ньютона в механике. В этом труде были сформулированы знаменитые уравнения Максвелла и была высказана гипотеза об электромагнитной природе света - что свет является электромагнитными волнами, - которая в 1888 г. была подтверждена Г. Герцем, экспериментально открывшим электромагнитные волны радио- и СВЧ- диапазона.

В теории Максвелла впервые в истории науки связывались между собой электрические и магнитные явления с оптическими явлениями. Упругий эфир Френеля превратился, таким образом, в носителя электромагнитных возмущений и электромагнитных волн, т.е. стал электромагнитным эфиром, а электрические и магнитные поля напряжённости и индукции стали рассматриваться как показатели напряжений и деформаций этого эфира.

Максвелл представлял себе электрические и магнитные поля и электромагнитные волны механически - как возмущения гипотетической, хотя и очень своеобразной, но всё же чисто механической сплошной среды, наделённой особыми механическими свойствами; при этом он считал, что эфир в пустоте и эфир в веществе имеют различные механические свойства.

Сам Максвелл считал, что его уравнения справедливы только для покоящегося эфира, возмущениями которого являлись, по его представлениям, рассматриваемые им электромагнитные поля и волны. Систему отсчёта, в которой эфир покоится Максвелл связывал с абсолютной системой отсчёта Ньютона.

Уравнения Максвелла составлены для четырёх векторных функций: E(x,y,z,t), D(x,y,z,t) - напряжённости и индукции электрического поля, H(x,y,z,t), B(x,y,z,t) - напряжённости и индукции магнитного поля. Эти функции характеризуют возмущение неподвижного электромагнитного эфира. Изменяющиеся со временем электрическое и магнитное поля не могут существовать по отдельности - они образуют единое электромагнитное поле, представляющее собой электромагнитные, в частности оптические волны.

Уравнения Максвелла имеют следующий вид:


rot E = -дB / дt , rot H = j + дD / дt , div D = р , div B = 0,

где j=j(x,y,z,t) - объёмная плотность элекрического заряда.

Как видим, уравнения Максвелла предполагают, что координаты x,y,z и время t описываются в некоторой системе отсчёта, которая, по предположению Максвелла является системой отсчёта, в которой невозмущённый электромагнитный эфир покоится.

Попытками распространить уравнения Максвелла на произвольно движущиеся материальные прозрачные среды, которые как предполагалось в соответствии с гипотезой Френеля каким-то образом увлекали с собой эфир, занимались многие крупные физики последней четверти XIX в., но, пожалуй, больше всех Г.А. Лоренц.

Исследуя выведенные им на основе его электронной теории уравнения Максвелла для движущейся среды, Лоренц в 1895 г. пришёл к удивительному результату, что с точностью до членов первого порядка малости по v/c, где v-скорость движения системы отсчёта, c-скорость движения электромагнитных волн, эти уравнения Максвелла можно строго математически преобразовать к виду уравнений Максвелла для неподвижной среды, т.е. он строго доказал, что уравнения Максвелла «не чувствуют» поступательного движения системы отсчёта, если только она движется с постоянной скоростью.

Лоренц получил тем самым объяснение отрицательных результатов проведённых к тому времени экспериментов, показывающих, что с помощью оптических и электродинамических эффектов первого порядка по v/c, производимых с земными источниками света, невозможно определить скорость движения Земли относительно межпланетного пространства Ньютона.

Чтобы объяснить остающийся, однако, необъяснённым отрицательный результат эксперимента Майкельсона - Морли второго порядка малости по v/c Лоренц и независимо Фицджеральд выдвинули знаменитую гипотезу о сокращении всех тел, движущихся в абсолютном пространстве вдоль направления движения в отношении, зависящем от скорости движения .

Если Lо - длина покоящегося тела, L-длина движущегося тела вдоль направления движения ,то, согласно этой “гипотезе сокращения”,

где b=, v/c v -скорость движения тела.

Чтобы объяснить невозможность определения скорости v тела, равномерно и прямолинейно движущегося относительно абсолютного пространства в оптических и электродинамических экспериментах ,не только первого, но и второго, и более высоких порядков по v/c, Лоренц доказал в своей работе по электродинамике движущихся сред (1904 г.) строгую математическую теорему, что уравнения Максвелла в покоящейся и движущейся инерциальных системах отсчета имеют математически совершенно одинаковый вид ,с точностью до членов и первого ,и второго, и более высоких порядков по v/c включительно .Он установил ,что они инвариантны. При этом Лоренц при преобразовании уравнений Максвелла от одной инерциальной системы отсчета к другой преобразовывал также и время t, вводя математически совершенно формально так называемое “локальное время”:

t¢=t- x

где x,t -координата и время в покоящейся системе отсчета.

В результате теоретических исследований Лоренца и проведённого Майкельсоном и Морли эксперимента естественно возникал электродинамический принцип относительности ,сформулированный Галлилеем ещё в XVII в.

Правда сам Лоренц этот принцип не провозгласил. Это сделали на основе его работ и в особенности его работы 1904 г. сначала Пуанкаре ,а немного позже и независимо Эйнштейн в 1905 г.

Согласно механическому принципу относительности ,проводя различные механические эксперименты в лаборатории, движущейся с постоянной скоростью относительно покоящейся абсолютной лаборатории, невозможно измерить ее скорость движения. (Все механические явления в обеих лабораториях происходят совершенно одинаково).

Согласно электродинамическому принципу относительности, нельзя определить скорость движения указанной движущейся лаборатории, производя в ней также и всевозможные электродинамические, в том числе оптические эксперименты. (Все электродинамические явления в обеих лабораториях происходят совершенно одинаково).

Как мы уже сказали, очень четко обобщенный общефизический принцип относительности, об инерциальных системах отсчета, впервые сформулировал Пуанкаре в 1904 г. за год до формулировки этого принципа Эйнштейном в 1905 г. и появления основополагающей в специальной теории относительности его знаменитой работы 1905 г. Пуанкаре ещё с начала 90-х годов XIX в. интересовался теорией Лоренца и работал над её развитием.

Основные преобразования инвариантности -так называемые преобразования Лоренца:

были опубликованы Лоренцем в 1904 г. в упомянутой работе.

Пуанкаре понял, что преобразования, найденные Лоренцем, составляют группу преобразований инвариантности четырехмерного пространства-времени, координатными осями которого являются пространственные оси x,y,z и ось времени t. Он же назвал преобразования, найденные Лоренцем, ”преобразованиями Лоренца”.

В знаменитой работе 1905 г. Эйнштейн сформулировал независимо от Пуанкаре общефизический принцип относительности для инерциальных систем отсчёта и, как он сам утверждал и как это часто утверждают другие, дал физически единственно правильную интерпретацию формулам преобразования Лоренца.

Эйнштейн заявил. что преставление о времени. которое существовало в физике со времён Галилея и Ньютона, ошибочно, что его надо исправить, т.е. строгим формальным образом определить, что такое “время”. Это его утверждение основывалось на предложенном им в работе 1905 г. кинематическом, т.е. в отличие от работ Лоренца никак не связаны с электродинамикой, выводе формул преобразований Лоренца, выведенных, как Эйнштейн считал, только из правильного, предложенного им в этой работе понимания понятия времени.

Родившаяся с появлением работы Эйнштейна 1905 г. так называемая специальная теория относительности оказалась исключительно полезной в физике микромира и стала широко использоваться в бурно развивавшихся в XX в. атомной физике, ядерной физике и физике элементарных частиц, т.е. в микрофизике.

Вообще считается, что в физике XX в. имеется только два главных фундаментальных теоретических достижения: теория относительности и квантовая механика.

4.2. Понятия абсолютного и относительного механического движения у Ньютона

В настоящее время в классической механике и во всех технических науках без каких-либо особых оговорок широко используется введённое Ньютоном в “Принципах” в 1687 г. представление об абсолютном движении, т.е. о движении тела или системы тел в абсолютно пустом пространстве ,т.е. относительно этого пространства при течении абсолютного времени. Считается ,что природа состоит из тел, движущихся или покоящихся в пустом пространстве. Само пространство неподвижно. О его движении говорить просто бессмысленно. Эти совершенно чёткие представления об абсолютном времени требуют ,однако ,серьёзных физических разъяснений.

Необходимо хорошо понимать, что при непосредственно экспериментальном исследовании механического движения или состояния покоя тела мы всегда подразумеваем (неявно, неосознанно) достаточно массивные твёрдые тела, относительно которых отсчитываем положение частей тела, системы тел ,малого тела в различные моменты времени ,мы подразуемые и некоторый определённый конкретный измеритель времени, т.е. часы.

Другими словами, при экспериментальном изучении механического движения мы всегда имеем некоторую вполне определённую «систему отсчета», под которой понимаются как все массивные тела ,относительно которых мы отсчитываем положение нашего движущегося или покоящегося тела, так и конкретный используемый в экспериментах измеритель времени.

Эту мысль часто выражают словами: движение относительно, или движение по природе своей относительно.

Пример: 1)Космонавты в космическом корабле в качестве естественной для себя системы отсчета используют систему ,жёстко связанную со стенками космического корабля, и обычные, механические или электронные часы, имеющиеся на борту.

2)Для нас, людей на Земле, имеется естественная система отсчета, жёстко связанная с неподвижными телами на поверхности Земли, или, что тоже самое ,жёстко связанные со стенами лаборатории. Это так называемая лабораторная система отсчета .В качестве измерителя времени используют лабораторные часы.

Отмечая относительный характер механического движения и необходимость фиксации определённой системы отсчёта ,обязательно надо давать себе отсчет в том, что различные система отсчёта физически и механически вовсе не равноправны.

Другими словами, механические движения тел в различных системах отсчёта происходят по-разному, по разным математическим и физическим законам.

Эксперименты, однако, показывают, что среди всех возможных систем отсчета в природе существуют всё-таки такие системы отсчёта ,относительно которых движение или системы тел или малых частей тела являются наиболее простым и естественным.

Эти системы определяются как системы отсчета, в которых выполняются абсолютно строго три закона Ньютона(в частности первый закон, согласно которому поступательно движущееся тело, не подверженное никаким внешним воздействиям ,движется равномерно и прямолинейно).Такие системы отсчёта называют инерциальными. Их бесконечно много .Все они движутся друг относительно друга прямолинейно и равномерно. Одну из этих систем мы можем назвать абсолютной и считать, что это как раз та система ,которую использует классическая механика Ньютона.

С другой стороны, может быть и на самом деле в природе существует одна .действительно абсолютная физ. система отсчета, скажем ,связанная с космическим пространством, простирающимся между Солнцем и Землёй и другими планетами.

Инерциальная система отсчёта является идеализацией, абстракцией, так как любая конкретная система отсчёта всегда, строго говоря, не инерциальна. Вместе с тем это очень полезная абстракция ,так как всегда можно указать (и использовать в экспериментах) систему отсчёта ,сколь угодно близкую к инерциальной. Например, для большинства механических экспериментов ,проводимых в лаборатории такой приближённо инерциальной системой является сама лабораторная система отсчёта, хотя она и участвует во вращательном движении Земли(в частности чтобы убедиться в её неинерциальности, в ней можно произвести известный опыт Фуко с маятником ,плоскость качания которого медленно поворачивается).

Намного более инерциальна не так называемая “геоцентрическая”, а рассматриваемая в небесной механике “гелиоцентрическая” система, центр которой помещён в центр масс Солнечной системы и оси которой направлены на три неподвижные звезды. Эта гелиоцентрическая система ,однако , тоже, строго говоря, не инерциальна ,так как Солнце с планетами совершает вращательное движение относительно ядра нашей галактики -”Млечного пути”.

Эксперименты ,вообще ,не могут указать ни одной по-настоящему инерциальной системы отсчёта.

Однако это неважно, так как мы всегда можем найти достаточно инерциальную систему для наших конкретных целей и представить себе абстрактно даже целый класс инерциальных систем отсчёта, движущихся относительно друг друга поступательно с постоянными скоростями.

Это - полезная абстракция. Из того что в природе нет идеальных геометрических прямых линий или идеальных геометрических плоскостей ,вовсе не следует ,что абстракции бесконечной прямой линии и бесконечной плоскости не являются полезными; они даже очень полезны для нас.

Таким образом, говоря об относительном характере движения, нельзя встать на наивную точку зрения -считать, что все системы отсчёта равноправны, что ”всё на свете относительно”.

И тем не менее на такую точку зрения ,к сожалению часто встают. Так ,с появлением теории относительности в XX в. некоторые её не очень образованные адепты стали утверждать, что бессмыслен был спор Коперника и Галилея с католической церковью (а фактически с Аристотелем и Птолемеем) о том, вращается ли Земля вокруг Солнца или Солнце вокруг Земли.



Чтобы объяснить идею абсолютного характера движения, Ньютон в “Принципах” (1687 г.) приводит описание знаменитого эксперимента с подвешенным ведром (“ведёрко Ньютона”). Возьмём ведро, или бадью, и подвесим его на верёвке к потолку ,закрутим верёвку и ведро, чтобы верёвка стала совсем тугой ,а потом отпустим ведро. Ведро придёт тогда через некоторое время в равномерное вращение ,при этом свободная поверхность воды примет форму параболоида вращения(“параболический мениск”). Вода относительно нас будет вращаться, т.е. будет происходить движение воды относительно лабораторной системы отсчёта. Представим теперь себе, что мы встали на большую вращающуюся платформу, расположимся точно на её оси и будем рассматривать свободно подвешенное ведро на незакрученной верёвке ,идущей точно вдоль оси платформы. Вода в ведре относительно нас вращается. Теперь, однако, свободная поверхность воды будет горизонтальной.

Две рассмотренные системы отсчёта, таким образом, неравномерны, хотя относительное движение нас и ведра одинаково в обеих системах.

4.3. Неинерциальные системы отсчёта и силы инерции

Механика Ньютона справедлива в инерциальных системах отсчёта.

В качестве такой системы с достаточным приближением можно взять стены лаборатории -лабораторную систему отсчёта.

В некоторых случаях ,однако, удобно, и даже очень удобно, изучать движение тела, системы тел, малых частей тела в неинерциальной системе отсчёта .Иногда это даже обязательно нужно сделать ,так как используемая инерциальная система отсчёта всегда в какой-то мере неинерциальна и это порою необходимо учитывать.

Можно привести примеры механических движений в падающем, оторвавшимся лифте, на вращающейся платформе на карусели, в купе железнодорожного вагона, движущегося с ускорением или замедлением ,в кабине космического корабля при выводе его на орбиту или кувыркающегося в пространстве и т.д. Все такие движения приходиться рассматривать в существенно неинерциальных системах отсчёта.

В этих существенно неинерциальных системах уравнения механики неверны, т.е. неправильно и уравнение второго закона Ньютона:

где F- сумма реальных физических сил, действующих на тело со стороны других физических тел.

В случаях, когда всё-таки удобно или необходимо рассматривать механическую систему в неинерциальной системе отсчёта ,нужно поэтому иметь какое-то исходное основное механическое уравнение вместо уравнения второго закона Ньютона.

Такое уравнение можно, разумеется, получить специальным математическим пересчётом из уравнения второго закона Ньютона, составленного для какой-нибудь инерциальной системы отсчёта, в данную удобную неинерциальную систему.

Результаты пересчета представляют, однако, снова в форме уравнения второго закона Ньютона, который теперь записывается следующим образом:


,

где Fин. обозначают возникающие при пересчете дополнительные математические члены, которые называют силами инерции. Это название, однако, не должно вводить нас в заблуждение: силы инерции никоим образом не являются настоящими физическими силами, так как нельзя указать никакого реального тела, или тел, действиями которых обусловлены указанные "мифические" силы. Они целиком определяются механическими свойствами рассматриваемой конкретной неинерциальной системы отсчета, характером ее движения.

Следует хорошо усвоить, что силы инерции действительно мифические, так как они не связаны ни с какими физическими взаимодействиями реальных физических тел.

К силам инерции относятся, в частности, так называемые центробежные силы и силы Кориолиса.

Пример 1. Определим силу F, стремящуюся растянуть, а потом и разорвать круговой обруч радиуса R массы M, равномерно вращающийся вокруг своей оси с угловой скоростью w .



Рассмотрение проведем в неинерциальной системе отсчета, вращающейся вместе с обручем с угловой скоростью w, в которой обруч покоится. В этой системе любая малая часть обруча тоже покоится. Рассмотрим бесконечно малый элемент обруча, стягиваемый центральным углом da. Кроме реальных физических сил, действующих на этот элемент обруча (к которым относятся силы F, действующие со



стороны примыкающих к обоим концам элемента остальных частей обруча и стремящиеся растянуть этот элемент обруча), надо рассмотреть теперь также и мифическую центробежную силу Fцб., действующую на элемент нашего обруча. При этом, согласно закону центробежной силы, на бесконечно малый элемент обруча, стягиваемый центральным углом da, действует сила

,

где k- масса в расчете на единицу длины обруча, или линейная плотность массы, т.е. k=M/2pR .

Сумма трех векторов сил, действующих на рассматриваемый бесконечно малый элемент, должна равняться нулю, так как этот элемент обруча в рассматриваемой неинерциальной системе отсчета покоится. Другими словами,


или


и окончательно получаем


Пример 2. Найти угол наклона к горизонтали свободной поверхности жидкости, налитой в сосуд прямоугольной формы, скатывающийся с наклонной плоскости, имеющей угол наклона к горизонту a.

Рассмотрение снова удобно вести в неинерциальной системе отсчета, жестко связанной с сосудом с жидкостью, в которой жидкость покоится. Эта неинерциальная система равномерно ускоренно движется вниз вдоль наклонной плоскости с ускорением a=g sin a.

Таким образом, на каждую малую жидкую частицу массы m в этой инерциальной системе действует не только сила тяжести F=mg, направленная вертикально вниз, но и сила инерции Fин.=ma, направленная в противоположную сторону движения, т.е. вверх вдоль наклонной плоскости.

Жидкость в прямоугольном сосуде как бы находится в однородном поле новых сил тяжести, имеющих ускорение g’, которое составляет некоторый угол b с вертикалью. Следовательно, свободная поверхность жидкости в скатывающемся сосуде, перпендикулярная направлению нового ускорения g’, будет составлять такой же угол b с горизонтальной плоскостью. Найдем угол b. Имеем косоугольный треугольник




Применим к нему теорему синусов


,

,

sin b(1-sin2a)=cos b sin a cos a,

sin b cos a =cos b sin a,

tg b=tg a.


Следовательно, искомый угол b равен углу a, т.е. свободная по верхность жидкости в скатывающемся по наклонной плоскости сосуде будет параллельна наклонной плоскости.


4.4. Астрономические и земные измерения скорости света


Впервые скорость света была измерена в конце XVII в. в 1675 г. датским астрономом О.Ремером (1644-1710), который смог найти ее значение из наблюдений за спутниками Юпитера- четырьмя "медичейскими звездами", открытыми Галилеем в 1610 г. В настоящее время открыто 11 спутников Юпитера.

Периоды обращений этих спутников порядка нескольких дней; они малы по сравнению с периодом обращения Юпитера (12 лет) и Земли (1 год) вокруг Солнца. Ремер наблюдал за первым спутников Юпитера с периодом обращения 42 час 28 мин. Он заметил, что когда Земля двигалась по своей орбите, удаляясь от Юпитера, период обращения спутника становился длиннее. Когда Земля, наоборот, приближалась к Юпитеру, период обращения спутника становился короче. Ремер из этих наблюдений сделал правильный вывод, - что разность максимального и минимального периодов обращений спутника равна времени, необходимого свету для прохождения расстояния равного диаметру земной орбиты.

Орбита Юпитера, как и других планет, лежит приблизительно в плоскости орбиты Земли - в плоскости эклиптики; все планеты вращаются в одну сторону.



На рисунке L обозначает расстояние между Землей и спутником Юпитера в тот момент, когда он входит в тень Юпитера. Момент затмения наблюдается на Земле с запаздыванием, равным Dt=L/c, где c - скорость распространения света в межзвездной среде - эфире. Очевидно время запаздывания минимально или максимально, когда расстояние между Юпитером и Землей, соответственно, минимально или максимально.

Рассмотрим сначала наблюдаемый с Земли интервал времени T между двумя последовательными затмениями спутника, т.е. период обращения спутника вокруг Юпитера. Обозначим через T0 истинный интервал времени между двумя последовательными затмениями, или истинный период обращения спутника вокруг Юпитера.

Рассмотрим, например, для определенности случай, когда Земля движется по направлению к Юпитеру со скоростью v. Тогда первое затмение спутника мы зафиксируем на Земле с запаздыванием, равным l/c, где l - расстояние от Земли до Юпитера в момент первого затмения, c - скорость света. Второе затмение спутника мы зафиксируем на Земле немного с другим запаздыванием, равным (l-Dl)/c, где Dl - расстояние, пройденное Землей к Юпитеру за время T0, прошедшее между двумя последовательными затмениями. Таким образом, отличие наблюдаемого периода T между двумя затмениями и истинного периода T-0 между ними равно


;


но очевидно , а потому


,


т.е. наблюдаемый с Земли период обращения T оказывается меньше истинного периода T0 .

Если теперь Земля удаляется от Юпитера со скоростью v , то отличие наблюдаемого периода T обращение спутника от истинного периода T0 будет равно


,


т.е. наблюдаемый с Земли период обращения спутника T окажется больше истинного периода T0.

Предположим теперь, что мы будем наблюдать затмения спутника Юпитера в течение полугода, когда Земля перемещается из точки A в точку C.


Если наблюдать два последовательных затмения с Земли, находящейся в некоторой промежуточной точке M на своей орбите, то очевидно



где f - угол ASM, который равен f =2pt/T3 , где t- время, протекающее с момента, когда Земля находилась в точке A своей орбиты, T3 - период обращения Земли вокруг своей орбиты. В течение полугода, когда Земля перемещается вдоль пути ABC, изменение периода варьируется от DT=0 в точке A до максимального значения DT=T0v/c в точке B и вновь до значения DT=0 в точке C .

Возьмем сумму изменений периода DT за полгода:

где k-номер наблюдаемого периода.

Очевидно сумму

можно рассматривать как интегральную сумму для следующего интеграла

так как tk=kT0, Dtk=T0. Вычисляя приведенный интеграл , находим

Следовательно приходим к формуле

т.е. сумма изменений наблюдаемых с Земли периодов обращения спутника за полгода равна времени, которое требуется свету для прохождения диаметра земной орбиты.

Если в первую половину года, когда Земля двигалась по пути ABC, т.е. удаляясь от Юпитера, наблюдаемые с Земли периоды Tk обращения спутника были больше истинного периода T0, то во вторую половину года, когда Земля будет двигаться по пути CDA, т.е. приближаясь к Юпитеру, наблюдаемые периоды Tk обращения спутника будут меньше истинного периода T0 причем для второй половины года

Таким образом, истинное значение периода T0 обращения спутника вокруг Юпитера можно определить, составив сумму наблюдаемых периодов TК обращения спутника за год и разделив её на полное число N наблюдаемых за год периодов:

Сам Ремер получил заниженное значение скорости света, равное приблизительно с=214000км/с, при этом его ошибка в основном объяснялась неточным знанием значения диаметра земной орбиты. Фактически Ремер привел не значение для скорости света, а значение для времени требующемуся для свету на прохождение расстояния от Солнца до Земли, которое он считал равным 11 мин=660 сек (на самом деле это время равно примерно 8 мин 20 сек=500 сек). Позднее, уже в 18 и 19 веках Деламбр (1790 г.) дал значение времени 493,2 сек. и Глазенап (1874 г.) - значение 500,8 сек. Сэмпсон в 1909 г. приводит значение 498,790,02 сек. Неровности поверхности Юпитера ведут к неизбежным ошибкам времени наблюдений затмений спутника.

Следующее, тоже астрономическое измерение скорости света было произведено английским астрономом Дж.Д.Брэдли (1692-1762). В 1728 г. он нашел правильное объяснение увиденного им необычного явления в движении звезд, которое было названо вскоре аберрацией.

Одной из важнейших задач наблюдательной астрономии последних десятилетий XVII в. и первых десятилетий XVIII в. было обнаружение параллаксов звёзд, необходимость наблюдений которых непосредственно вытекала из коперниковой системы мироздания, а их отсутствие служило существенным доводом против этой системы; здесь речь идет, конечно, не о суточных, а о так называемых годичных параллаксах (суточный - это угол, под которым виден радиус Земли с небесного тела; годичный - это угол, под которым виден с небесного тела радиус орбиты Земли вокруг Солнца). Брэдли как раз и стремился обнаружить эти так называемые годичные параллаксы”, то есть углы растворов конусов, отбрасываемых на небесную сферу линиями визирования, направленными на звезду с различных точек земной орбиты. Однако вместо параллаксов (которые вследствие их чрезвычайной малости из-за огромной удаленности звезд от Земли впервые были измерены только в конце XIX в. Бесселем, то есть через 100 лет после Брэдли ), Брэдли открыл не параллакс, а аберрацию.


На рисунке показано, как образуются звездой круговые траектории на небесной сфере для звезды, расположенной точно в полюсе эклиптики. На левом рисунке проиллюстрировано явление годичного параллакса, на правом - явление аберрации. Видим, что положения звезды на круге при параллаксе и при аберрации для фиксированного положения Земли на орбите разные; они различаются поворотом на 900.

Брэдли наблюдал за ежесуточными проходами через меридиан звезды g в голове созвездия Дракона, находящейся вблизи полюса эклиптик. Начав наблюдения в декабре 1725 г., Брэдли заметил, что эта звезда всё более отклонялась к югу. Её смещение достигло 20`` к началу марта. Затем звезда на несколько дней остановилась, а затем стала снова двигаться, но теперь в обратную сторону - к северу. К июню звезда заняла свое прежнее положение, какое у неё было в декабре, прошла его и в течение второго полугодия проделала точно такой же путь на север и обратно. Это движение звезды нельзя было объяснить как результат параллакса (если бы это было годовое параллактическое движение, то движение звезды к югу должно начаться не в декабре, а в марте, а движение её к северу не в июне, - а в сентябре) и Брэдли догадался, что наблюдаемый им эффект обязан конечности скорости распространения света и годичному движению Земли по своей орбите.

Брэдли пишет : Наконец я догадался, что если свет распространяется во времени, то кажущееся положение неподвижного предмета, когда глаз находится в покое, будет иное, чем когда глаз движется в направлении, уклоняющемся от линии, соединяющей предмет с глазом, и что когда глаз движется в различных направлениях, то и кажущееся положение объекта будет различным”.

Объяснение Брэдли эффекта аберрации было следующее.

Пусть прямая CA - путь луча света, идущего от источника C, по которому движется световая корпускула. Пусть глаз наблюдателя движется вдоль прямой BA со скоростью v, которая относится к скорости света c, как BA относится к CA. Корпускула света, которая обеспечивает видение глазом источника C в точке A, должна была быть испущена источником C в тот момент, когда глаз находился в точке B.

Трубу телескопа, которую Брэдли мысленно представил себе движущейся параллельно самой себе вдоль прямой BA надо направить вдоль прямой BC, чтобы получить свет от источника C. Трубу телескопа, Брэдли взял такого диаметра, чтобы она пропускала только одну световую корпускулу. Угол BCA = a характеризует угол наклона линии визирования на источник к линии, вдоль которой движется глаз. Очевидно sin a = (v/c)sinj ,при j = 900, то есть для звезды в полюсе эклиптики, имеем sin a = v/c ;при j = 00, то есть для звезды на эклиптике, имеем sin a = 0.

Скорость v - это скорость движения Земли на орбите. Она Брэдли была известна, так как радиус земной орбиты был уже к тому времени давно точно измерен. Зная длину пути, пройденного Землей за год, можно было вычислить, что v = 30 км/с. Зная эту скорость и угол аберрации a, по приведенной формуле можно было легко рассчитать скорость света c. Создав теорию для g Дракона, Брэдли перешел к её подтверждению путем наблюдений за другими звездами. В 1726-28 гг. он наблюдал аберрацию ещё для 7 звёзд вблизи полюса эклиптики и для всех них полная амплитуда углового смещения на небе составила величину 40``-41`` (среднее 40``,4). Таким образом, угол аберрации a оказался равным 20``,2. Этот угол даёт значение скорости света 301000 км/с, но Брэдли на самом деле приводит не это значение, а значение для времени распространения света от Солнца до Земли, которое он считал равным 8 мин 12 сек.

Брэдли объяснил открытую им в 1728 г. аберрацию неподвижных звёзд на основе корпускулярной теории света. В 1804 г. Юнг показал, однако что аберрацию можно объяснить и на основе волновой теории света. При этом Юнг сделал следующее предположение. Земля и все тела на Земле пронизаны, пропитаны эфиром, но при движении Земли и тел на её поверхности они не могут этот эфир увлечь за собой или сколь-либо существенным образом его возмутить. Поэтому возникает эфирный ветер”, пронизывающий все тела на движущейся Земле. Тела не способны задерживать эфир, как неспособны удерживать ветер кроны деревьев”, как писал Юнг.

Таким образом, световые волны, идущие от звезды, не будут принимать участия в движении телескопа, и если считать что телескоп направлен на истинное положение звезды, а Земля, для простоты, пусть движется перпендикулярно направлению на звезду, то изображение звезды будет смещено от центрального перекрестья в фокусе на расстояние, равное тому, которое пройдет Земля за время, пока свет будет идти через трубу телескопа.

На рисунке MN = ct, KN = vt, где t - время, требующееся свету, чтобы пройти через трубу телескопа. Таким образом, угол аберрации

Здесь рассматривается для простоты случай, когда направление движения Земли составляет точно прямой угол с направлением на звезду.

В земных условиях скорость света сумели измерить только в середине XIX в. Это сделали Физо (1849 г.) и Фуко (1865 г.) двумя различными методами (с использованием быстро вращающегося зубчатого колеса и с использованием быстро вращающегося многогранного зеркала), при этом было подтверждено значение скорости света c = 300000 км/с, полученное астрономическим методом.



Случайные файлы

Файл
p08.doc
16019.doc
159149.rtf
27246-1.rtf
wwwwww.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.