света, говорили о больших успехах волновой теории света, которая “просто и красиво объяснила многие сложные явления”, об отсутствии объяснения аберрации в рамках волновой теории.

Приступим к изложению содержания работы Стокса 1845 г. Однако несколько формализуем рассуждения Стокса, для лучшего понимания их сути.

Стокс предполагает, что Земля, двигаясь с постоянной скоростью в межпланетном пространстве переносит какую-то часть эфира с собой, вследствие того, что эфир вблизи её поверхности покоится относительно её поверхности, как бы “прилипает” к ней, причём скорость эфира нарастает при удалении от поверхности Земли, пока на не очень большом расстоянии, она не станет равной скорости эфира, покоящегося в межпланетном пространстве, относительно Земли. Таким образом, можно предположить, что в системе отсчёта, жёстко связанной с Землёй, эфир натекает на Землю стационарным сплошным потоком, обтекая её со всех сторон, с некоторым полем скоростей , не зависящим от времени t.

Предположим, что положение фронта световой волны, распространяющейся в стационарно движущемся эфире, в момент времени t, даётся уравнением вида составим дифференциальное уравнение, которое позволило бы определить последовательные положения фронта световой волны в различные моменты времени, т.е. определить эволюцию волнового фронта. Для этого надо найти функцию ¦.

Возмущение эфира, каковым является световая волна, в случае покоящегося эфира перемещается за интервал времени t, t+dt из точки x,y,z в точку с координатами где с — скорость света в покоящемся эфире и где считаем, что возмущение распространяется по нормали к поверхности ¦=0, взятой в точке x,y,z. Возмущение в движущемся эфире, с заданным полем скоростей, по определению Стокса, за интервал времени t, t+dt из точки x,y,z перемещается в точку с координатами т.е. Стокс считает, что распространяющееся в эфире возмущение просто сносится движением эфира. Таким образом, положение фронта в движущемся эфире в момент времени t+dt даётся уравнением . Разлагая последнее уравнение по малости dt, получаем искомое уравнение, описывающее эволюцию волнового фронта оптической волны, распространяющейся в движущемся эфире: или ;

Хотя этого рассуждения Стокс и не приводит, но оно неявно содержится в его рассуждениях. Знак ± соответствует неопределённости направления нормали, задаваемой вектором с компонентами

Будем теперь считать, что скорость эфира, т.е. величины u, u, w малы по сравнению со скоростью света с и построим частное приближённое решение дифференциального уравнения, которое Стокс фактически и рассматривает в своей работе 1845 г. по теории аберрации.

Нулевое приближение. Положим u = u = w = 0 в приведённом уравнении для ¦, т.е. рассмотрим покоящийся эфир. Тогда легко убедиться, что уравнение нулевого приближения имеет следующее частное решение: , это решение описывает оптическую плоскую волну, распространяющуюся в отрицательном направлении оси z. Действительно, уравнение нулевого приближения имеет вид здесь мы взяли знак минус перед корнем, причём для приведенной нулевой функции справедливы соотношения: перед корнем мы берём знак “-”.

Первое приближение. Считая теперь скорости u, u, w малыми величинами, первого порядка малости, найдём приближённое решение приведённого полного уравнения, со знаком “-” перед корнем, переходящее при пренебрежении величинами u, u, w в решение ¦0 , в виде функции где является малой величиной первого порядка малости по u, u, w . Следуя Стоксу, считаем, что поправочная функция z зависит только от координат x, y и не зависит от координаты z. Это предположение, разумеется, несколько ограничивает произвол отыскиваемого решения. Но если нам удастся его построить, то всё в порядке. Из полного уравнения, которому удовлетворяет функция ¦, со знаком “-” перед корнем, имеем следующее приближённое уравнение для определение функции z : из которого непосредственно получаем приближённое уравнение для определения функции z. Интегрируя полученное уравнение по t, приходим к соотношению

Таким образом, окончательно приходим к следующему приближённому уравнению для определения положения фронта рассматриваемой волны в момент времени t:

Составим выражения для компонент ненормированной нормали к этой поверхности волнового фронта в точке x,y,z = - ct в момент времени t. Имеем

Обозначим через направляющие косинусы для нормали, взятой к найденной приближённо волновой поверхности. Так как величина w /c мала, то углы так что приближённо можно положить .

В этом месте своих рассуждений Стокс прибегает к гипотезе о потенциальности поля скоростей эфира.


Гипотеза Стокса. Поле скоростей эфира потенциально, т.е. существует такая функция j(x,y,z), что

Согласно гипотезе Стокса имеем следующие очевидные простые соотношения для компонент поля скоростей: используя которые, выведенные приближённые формулы для углов a и b можно записать в виде

Следовательно для изменения углов a и b от момента времени t=t1 до момента времени t=t2 имеем следующие очень простые формулы:

Из этих формул нетрудно получить общеизвестный закон аберрации. Пусть свет от звезды идёт по направлению, строго перпендикулярному направлению движения Земли. Первый момент времени t=t1 возьмём таким, чтобы фронт световой волны находился на столь большом удалении от Земли, чтобы для скорости эфира в точках этого фронта можно было считать, что предполагаем, что Земля движется в положительном направлении оси x с постоянной скоростью u . Второй момент времени t=t2 возьмём в тот самый момент, когда волновой фронт дошёл до Земли, тогда

Следовательно, фронт, идущий от звезды плоской волны, поворачивается по приближению к Земле таким образом, что угол, составленной его нормалью с осью х, станет равным где u — скорость движения Земли, с — скорость света в покоящемся эфире. См. рис.


Наблюдателю на Земле будет казаться, что звезда сместилась на небе в сторону направления движения Земли на угол аберрации равный .

В 1880 г. Стокс опубликовал важное дополнение к изложенной нами сейчас работе 1845 г. Он обратил внимание на то, что в работе 1845 г. он проследил лишь за изменениями направления нормали к фронту волны, по мере распространения волны от звезды до Земли. Когда эфир покоится, траектории волновых нормалей совпадают с траекториями лучей. Когда эфир движется, с заданным полем скоростей, траектории волновых нормалей и траектории лучей перестают совпадать.

Обозначим через n — единичный вектор нормали в некоторой точке фронта волны в момент времени t и через s — единичный вектор направления луча в этой точке волнового фронта, рассматриваемого в момент времени t . Пусть a, b — углы вектора нормали n с осями x, y, причём все эти углы мало отличаются от прямых

Стокс считает, что где v(u,u,w) — поле скоростей эфира в рассматриваемой точке волнового фронта в момент времени t. Следовательно: или окончательно Приращение этих углов за интервал времени t, t+dt, когда dz= - cdt, таким образом равно


Случайные файлы

Файл
64187.rtf
20517-1.rtf
147244.rtf
77823-1.rtf
matan.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.