Техника и электроника СВЧ (Часть 1) (Lecture4)

Посмотреть архив целиком

Лекція 4

Узагальнена плоска хвиля.

Для рівняння загальний розв’язок (можна перевірити підстановкою). Таким чином хвиля розповсюджується в багатьох напрямках:

- хвиля в напрямку .

- хвиля в напрямку .

Задача: Нехай хвиля падає під кутом до поверхні середовища, знайти характеристики відбитої хвилі та заломленої.











Розв’язок: Вважаємо, що . Раніше ми показали, що розв’язком рівнянь Максвела є узагальнене рівняння хвилі. Тоді для даних хвиль:

( ми розглянули плоску задачу в ).

Гранична умова: . Тоді , де ; ; ; коефіцієнти не повинні залежати від . В цьому випадку (*). Тоді (**).

Виходячи з (*), маємо . (очевидно якщо відкласти відрізки на малюнку). Аналогічно .

- перший закон Смеліуса.

- другий закон Смеліуса.



Наближені граничні умови Леонтовича.

Розглянемо ідеальну металеву поверхню. Для неї граничні умови: ; . Однак, тут - не враховувалися втрати в металі. Їх врахував Леонтович:


  1. Нехай хвиля падає під кутом до поверхні. Леонтович вважав, що якби хвиля не падала, вона йде нормально до поверхні. Це можна пояснити тим, що в металі , тому кут заломлення дуже малий: . Це наближена умова.

  2. Леонтович вважав, що в металі розповсюджується звичайна електромагнітна хвиля, в якій , де . Ця рівність зберігається і на межі металу. У вакуумі , при цьому ; . Це і є наближена гранична умова.


Відбивання від ідеально провідної границі (метал) ТЕ, ТМ хвилі.















- падаюча хвиля (індекс “п”). Обираємо знак “+” для . Тоді . Сумарне поле над металом

Таким чином, сумарна хвиля розповсюджується в напрямку