Сверхпроводимость : история развития, современное состояние, перспективы (01)

Посмотреть архив целиком


Cверхпроводники: история развития, современное

состояние и перспективы


Открытие в конце 1986 года нового класса высокотемпературных сверхпроводящих материалов радикально расширяет возможности практического использования сверхпроводимости для создания новой техники и окажет революционизирующее воздействие на эффективность отраслей народного хозяйства.

Явление, заключающееся в полном исчезновении электрического сопротивления проводника при его охлаждении ниже критической температуры, было открыто нидерландским физиком Х.Камерлинг-Оннесом в 1911 году, а удовлетворительное объяснение, отмеченное именами американских физиков Л.Купера, Дж.Бардина ,Дж.Шриффера, советского математика и физика Н.Н.Боголюбова, получило практическое использование этого явления в середине шестидесятых годов, после того как были разработаны сверхпроводящие материалы, пригодные для технических применений - настолько трудна была проблема.

Сверхпроводимость обнаружена более чем у 20 металлов и большого количества соединений и сплавов (Тк £ 23К), а также у керамик (Тк > 77,4К – высокотемпературные сверхпроводники.)Синтезом всё новых и новых материалов уже удалось поднять сверхпроводимость до 160 К(почти 100 °C.В составе всех этих высокотемпературных сверхпроводников ВТСП обязательно присутствуют ионы меди Сu²ª(роль их в возникновении сверхпроводимости пока не ясна ), которые служат как бы микроскопическими магнитами.Сверхпроводимость материалов с Тк £ 23К объясняется наличием в веществе пар электронов, обладающих энергией Ферми, с противоположными спинами и импульсами (пары Купера), которые образуются благодаря взаимодействию электронов с колебаниями ионов решетки – фононами. Все пары находятся, с точки зрения квантовой механики, в одном состоянии (они не подчиняются статистике Ферми т.к. имеют целочисленный спин) и согласованы между собой по всем физическим параметрам, то есть образуют единый сверхпроводящий конденсат.

Сверхпроводимость керамик, возможно, объясняется взаимодействием электронов с каким-либо другими квазичастицами.У сверхпроводимости три врага: высокие температуры, мощные магнитные поля и большие токи.Если их величины превысят предельные значения, называемые критическими, сверхпроводимость исчезает, сверхпроводник становится обычным проводником.По взаимодействию с магнитным полем сверхпроводники делятся на две основные группы: сверхпроводники I и II рода.

Сверхпроводники первого рода при помещении их в магнитное поле «выталкивают» последнее так, что индукция внутри сверхпроводника равна нулю (эффект Мейсснера).Напряжонность магнитного поля, при котором разрушается сверхпроводимость и поле проникает внутрь проводника, называется критическим магнитным полем Нк.У сверхпроводников второго рода существует промежуток напряженности магнитного поля Нк2 > Н > Нк1, где индукция внутри сверхпроводника меньше индукции проводника в нормальном состоянии.Нк1 – нижнее критическое поле, Нк2 – верхнее критическое поле. Н < Нк1 – индукция в сверхпроводнике второго рода равна нулю, Н > Нк2 – сверхпроводимость нарушается.Через идеальные сверхпроводники второго рода можно пропускать ток силой: (критический ток).Объясняется это тем, что поле, создаваемое током, превысит Нк1, вихревые нити, зарождающиеся на поверхности образца, под действием сил Лоренца, двигаются внутрь образца с выделением тепла, что приводит к потере сверхпроводимости.

Tk, Нк1, Нк2, некоторых металлов и соединений:

Вещество

Тк К

m0Нк1 Тл

m0Нк2 Тл

Pb

7.2

0.55


Nb

9.2

0.13

0.27

Te

7.8



V

5.3



Ta

4.4



Sn

3.7



V3Si

17.1


23.4

Nb3Sn

18.2


24.5

Nb3Al

18.9



Nb3Ga

20.3


34.0

Nb3Ge

23.0


37.0

(Y0.6Ba0.4)2CuO4

96


160±20

Y1.2Ba0.3CuO4-8

102


18 при 77К


Сверхпроводимость до сих пор привлекает к себе пристальное внимание со стороны физиков-теоретиков.Ввиду сложности явления разрабатываются как можно более простые модели, из которых были бы предельно ясны его основные черты. Одно из упрощений связано с понятием размерности.Интуитивно ясно, что двухмерную, плоскую кристалическую структуру исследовать, вообще говоря, легче, чем трёхменую, пространственную; одномерную, линейную- проще, чем двухмерную. Вот почему, рассуждая о сверхпроводимости, теоретики часто обращаются к модели так называемого одномерного кристалла. Его частицы взаимодействуют друг с другом лишь в одном каком-то направлении, а в двух других, поперечных направлениях взаимодействие между частицами пренебрежимо малы.

В рамках такой модели американский физик У.Литлл в 1964 году выдвинул смелое предположение: возможны сверхпроводники не металлической, а органической природы. Важное место в своих рассуждениях Литлл отводил полимерным молекулам, в основной цепи которых есть чередующиеся единичные и кратные связи (химики называют такие связи сопряжёнными). Дело в том, что каждая химическая связь, соединяющая атомы,- это пара принадлежащих им обоим электронов. В цепочке сопряженных связей степень обобщестления электронов еще выше: каждый из них в равной мере принадлежит всем атомам цепочки и может свободно перемещаться вдоль нее. Эту особенность сопряженных связей в основной цепи полимерной молекупы Литлл полагал важной предпосылкой для перехода в сверхпроводящее состояние. Необходимой для перехода он считал и особую структуру ответвлений от основной цепи. Составив проект своего полимера, ученый заключил: вещество с такими молекулами обязано быть сверхпроводящим; более того - в это состояние оно должно переходить при не очень низкой температуре, возможно, близкой к комнатной.

Проводники, свободные от всяких энергетических потерь при совершенно обычных условиях, конечно же, совершили бы революцию в электротехнике.Идея американского физика была подхвачена во многих лабораториях различных стран.

Однако довольно быстро выяснилось, что придуманный Литллом пример никоем образом перейти в сверхпроводящее состояние не способен. Но энтузиазм рожденный смелой идей ,дал свои плоды, пускай и не там, где они предвиделись на первых порах. Сверхпроводимость была таки обнаружена за пределами мира металлов. В 1980 году в Дании группа исследователей под руководством К. Бекгарда, эксперементируя с органическим веществом из класа ион-радикальных солей, перевела его в сверхпроводящее состояние при давлении 10 килобар и температуре на 0,9 градуса выше абсолютного нуля. В 1983 году коллектив советских физиков , возглавляемый доктором физико-математических наук И.Ф. Щеголевым, добился от вещества того же класса перехода в сверхпроводящее состояние уже при 7 градусах абсолютной шкалы температур и при нормальном давлении.В ходе всех этих поисков и проб вниманием исследователей не был обойден и карбин.( Карбин - органическое вещество, крайне редко встречающееся в природе. Структура которого - бесконечные линейные цепочки из атомов углерода.Свою структуру сохраняет при нагреве до 2000 °С , а затем, начиная примерно с 2300 °С, она перестраивается по типу кристаллической решётки графита.Плотность карбина составляет 1,9-2,2 г/см³.

(…=С=С=С=С=С=С=С=С=С=С=С=…))

В связи с тем, что критические температуры этих материалов не превышали 20 К, все созданные сверхпроводниковые устройства эксплуатировались при температурах жидкого гелия, т.е. при 4-5 К. Несмотря на дефицитность этого хладоагента, высокие энергозатраты на его ожижение, сложность и высокую стоимость систем теплоизоляции по целому ряду направлений началось практическое использование сверхпроводимости. Наиболее крупномасштабными применениями сверхпроводников явились электромагниты ускорителей заряженных частиц, термоядерных установок, МГД-генераторов. Были созданы опытные образцы сверхпроводниковых электрогенераторов, линий электропередачи, накопителей энергии, магнитных сепараторов и др. В последние годы в различных капиталистических странах началось массовое производство диагностических медицинских ЯМР-томографов со сверхпроводниковыми магнитами, потенциальный рынок которых оценивается в несколько млрд. долларов.

Открытие высокотемпературных сверхпроводников, критическая температура которых с запасом превышает температуру кипения жидкого азота, принципиально меняет экономические показатели сверхпроводниковых устройств, поскольку стоимость хладоагента и затраты на поддержание необходимой температуры снижаются в 50-100 раз. Кроме того, открытие высокотемпературной сверхпроводимости (ВТСП) сняло теоретический запрет на дальнейшее повышение критической температуры с 30 - вплоть до комнатной. Так, со времени открытия этого явления критическая температура повышена с 30 - 130 К.


Случайные файлы

Файл
45922.rtf
kursovik.doc
28667-1.rtf
99583.rtf
37086.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.