Простой эффект Джозефсона (149713)

Посмотреть архив целиком

Петрозаводский Государственный Университет



















Реферат

Стационарный эффект Джозефсона:

физика и применение

дисциплина «Физика сверхпроводников»

Выполнил студент V курса

физико-технического факультета

Сержантов Д. Н.













Петрозаводск 2003

Сверхпроводимость - макроскопическое квантовое явление

При понижении температуры многие металлы и сплавы переходят в сверхпроводящее состояние. Этот переход происходит при вполне определенной для каждого материала температуре Tc , называемой критической. Сверхпроводимость характеризуется идеальной электропроводностью (сопротивление электрическому току равно нулю, если плотность тока меньше некоторой критической величины jc) и идеальным диамагнетизмом (индукция магнитного поля внутри сверхпроводника равна нулю, если ее значение снаружи меньше критического Вс).

В микроскопической теории сверхпроводимости важным моментом является объяснение достаточно сильного притяжения между двумя электронами, возникающего при поляризации кристаллической решетки. Два электрона с противоположными спинами и направлениями движения объединяются в пару, называемую куперовской (по имени американского ученого Л. Купера, впервые показавшего, что такие два электрона образуют связанное состояние). Эти пары обладают нулевым суммарным спином и поэтому являются бозе-частицами (то есть частицами, подчиняющимися статистике Бозе-Эйнштейна). Такие частицы обладают замечательным свойством: если температура ниже Тс , они могут скапливаться на самом нижнем энергетическом уровне (в основном состоянии). Чем больше их там соберется, тем труднее какой-либо частице выйти из этого состояния. Для этого необходимо преодолеть энергетический барьер величиной 2 (по на каждый электрон в паре). Все частицы при этом описываются единой волновой функцией или, другими словами, когерентны. Характерное расстояние между двумя электронами в куперовской паре, называемое длиной когерентности , различно для разных сверхпроводников и может принимать значения 10-7-10-5љсм.

Таким образом, сверхпроводимость можно представить себе так. При Т < Тс электрический ток переносится куперовскими парами, то есть элементарными носителями тока с зарядом 2e (e - заряд электрона). При этом какой-либо частице совсем не просто рассеяться на примесном атоме или каком-либо другом дефекте кристаллической решетки металла, включая тепловые колебания ионов. Для этого ей нужно преодолеть сопротивление всех остальных подобных частиц.

Так как электрическое сопротивление равно нулю, то возбужденный в сверхпроводящем кольце ток будет существовать бесконечно долго. Электрический ток в этом случае напоминает ток, создаваемый электроном на орбите в атоме Бора: это как бы очень большая боровская орбита. Незатухающий ток и создаваемое им магнитное поле (рис. 1) не могут иметь произвольную величину, они квантуются так, что магнитный поток, пронизывающий кольцо, принимает значения, кратные элементарному кванту потока

Вб (h - постоянная Планка).


Рис. 1.Незатухающий ток и создаваемое им магнитное поле не могут иметь произвольную величину, они квантуются так, что магнитный поток, пронизывающий кольцо, принимает значения, кратные элементарному кванту потока Вб (h - постоянная Планка).


В отличие от электронов в атомах и других микрочастиц, поведение которых описывается квантовой теорией, сверхпроводимость - макроскопическое квантовое явление. Действительно, длина сверхпроводящей проволоки, по которой течет незатухающий ток, может достигать многих метров и даже километров. При этом носители тока в ней описываются единой волновой функцией. Это не единственное макроскопическое квантовое явление. Другим примером может служить сверхтекучесть в жидком гелии или в веществе нейтронных звезд.

В 1962 году появилась статья [Josephson B.D.,1962] никому до того неизвестного автора Б. Джозефсона, в которой теоретически предсказывалось существование двух удивительных эффектов: стационарного и нестационарного. Джозефсон теоретически изучал туннелирование куперовских пар из одного сверхпроводника в другой через какой-либо барьер. Прежде чем переходить к первому эффекту Джозефсона, остановимся кратко на туннелировании электронов между двумя частями металла, разделенными тонким слоем диэлектрика.

Туннельный эффект

Туннельный эффект - это типичная задача квантовой механики. Частица (например, электрон в металле) подлетает к барьеру (например, к слою диэлектрика), преодолеть который она по классическим представлениям никак не может, так как ее кинетическая энергия недостаточна, хотя в области за барьером она со своей кинетической энергией вполне могла бы существовать. Напротив, согласно квантовой механике, прохождение барьера возможно. Частица с некоторой вероятностью может как бы пройти по туннелю через классически запрещенную область, где ее потенциальная энергия как бы больше полной, то есть классическая кинетическая энергия как бы отрицательна. На самом деле с точки зрения квантовой механики для микрочастицы (электрона) справедливо соотношение неопределенностей (x - координата частицы, p - ее импульс). Когда малая неопределенность ее координаты в диэлектрике (dљ-љтолщина слоя диэлектрика) приводит к большой неопределенности ее импульса , а следовательно, и кинетической энергии p2/(2m) (m - масса частицы), то закон сохранения энергии не нарушается. Опыт показывает, что действительно между двумя металлическими обкладками, разделенными тонким слоем диэлектрика (туннельный переход), может протекать электрический ток тем больший, чем тоньше диэлектрический слой.

Стационарный эффект Джозефсона

Джозефсон рассматривал частный случай туннельного эффекта - туннелирование куперовских пар - и предсказал существование двух эффектов. Первый из них состоит в том, что через туннельный переход с тонким слоем диэлектрика, когда его толщина меньше или порядка длины когерентности (), возможно протекание сверхпроводящего тока, то есть тока без сопротивления. Предсказывалось, что критическое значение этого тока будет своеобразно зависеть от внешнего магнитного поля. Если ток через такой переход станет больше критического, то переход будет источником высокочастотного электромагнитного излучения. Это нестационарный эффект Джозефсона, который в данной работе не рассматривается..

Понадобилось немного времени, чтобы обнаружить эти эффекты экспериментально. Более того, вскоре стало ясно, что эффекты Джозефсона присущи не только туннельным переходам, но и более широкому классу объектов - сверхпроводящим слабым связям, то есть участкам сверхпроводящей цепи, в которых критический ток существенно подавлен, а размер участка порядка длины когерентности .

В основе эффектов Джозефсона лежат квантовые свойства сверхпроводящего состояния (см. выше). Действительно, сверхпроводящее состояние характеризуется когерентностью куперовских пар: эти пары электронов находятся на одном квантовом уровне и описываются общей для всех пар волновой функцией, ее амплитудой и фазой. Они когерентны как частицы света - фотоны в излучении лазера, которое также характеризуется амплитудой и фазой электромагнитной волны.

Представим теперь себе два массивных куска одного и того же сверхпроводника, полностью изолированных друг от друга. Так как оба они находятся в сверхпроводящем состоянии, каждый из них будет характеризоваться своей волновой функцией. Поскольку материалы и температуры одинаковы, модули обеих волновых функций должны совпадать, а фазы произвольны. Однако, если установить между ними хотя бы слабый контакт, например туннельный, куперовские пары будут проникать из одного куска в другой и установится фазовая когерентность. Возникнет единая волновая функция всего сверхпроводника, которую можно рассматривать как результат интерференции волновых функций двух половинок. Ниже будет показано, что сверхпроводники со слабыми связями дают уникальную возможность наблюдения фазы волновой функции в макроскопическом масштабе аналогично проявлению фазы электромагнитной волны в явлениях интерференции в оптике.

Следует заметить, что слабая связь между двумя сверхпроводниками - это просто удобный объект для обнаружения интерференционных эффектов. Однако такие эффекты были известны сравнительно давно. Один из ярких примеров - квантование магнитного потока и тока в сверхпроводящем кольце. Действительно, сверхпроводящий ток может принимать только такие значения, при которых на длине кольца может уложиться целое число длин волн волновой функции сверхпроводящих электронов, то есть при обходе по контуру кольца волновая функция в каждой точке попадает в фазу сама с собой. Еще раз видна полная аналогия с квантованием орбит в атоме Бора.

Как уже упоминалось, стационарный эффект Джозефсона состоит в том, что достаточно слабый ток I (меньший критического тока слабой связи Ic) протекает без сопротивления, то есть на ней не происходит падения напряжения. Джозефсон получил следующее выражение для тока I:

, (1)

где - разность фаз волновых функций по разные стороны слабой связи. В своей работе [Josephson B.D.,1962] Джозефсон предсказал, что в области диэлектрической прослойки будут интерферировать когерентные токи, исходящие из обоих сверхпроводников, так же как световые волны от двух когерентных источников. Поэтому результирующий ток оказывается пропорциональным синусу разности фаз.

Через год после предсказания Джозефсона этот эффект проверил прямым экспериментом Дж. Роуэлл. В туннельных экспериментах такого рода, когда диэлектрическая прослойка очень тонка, основная трудность состоит в устранении контакта металлических обкладок из-за дефектов диэлектрика. Надо каким-то образом доказать, что наблюдаемый ток не является следствием тривиальных закороток, а действительно является туннельным током. Для этого Дж. Роуэлл поместил туннельный переход в магнитное поле, направленное вдоль плоскости барьера. Естественно, что магнитное поле не может влиять на закоротки и в этом случае ток практически не изменился бы. Однако даже очень слабое магнитное поле влияло на ток, причем совершенно нетривиальным образом.






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.