Ответы на вопросы к госу по МПФ (149677)

Посмотреть архив целиком

39



1. Методические особенности изучения темы «Давление твердых тел, жидкостей и газов»

Изучение этой темы является продолжением темы «Взаимодействие тел» в 7 классе. Здесь рассматривается случай, когда твердые, жидкие и газообразные тела соприкасаются друг с другом по некоторой поверхности и находятся относительно друг друга в покое. В этом случае оба взаимодействующих тела деформированы по всей поверхности соприкосновения.

В качестве меры напряженного состояния тел, используют физическую величину – давление.

Формирование этого понятия можно начинать с рассмотрения примеров из повседневной жизни, хождение по снегу на лыжах и без и т.д. На основе примеров можно сделать вывод: результат действия силы зависит не только от ее модуля, но и от площади той поверхности, перпендикулярно которой она действует. Здесь можно предложить учащимся опыт, описанный в учебнике (песок, гвозди, груз).

При введении понятий давления, можно создать проблемную ситуацию, ставя перед учениками следующие задачи:

1. Мальчик стоит на снегу на лыжах, а потом без. В каком случае снег деформируется больше.

2. На лыжах стояли сначала папа, а потом его 5-ти летний сын.

3. На лыжах стояли папа и сын, длина лыж у папы 2,70 м, а у сына 1,10 м.

На 3-й вопрос ученики затрудняются ответить, следовательно возникает необходимость уравнять условия, рассматривать силу, действующую на единицу поверхности. Это новую величину называют давлением.

Далее даем опережение:

Величина, равная отношению силы, действующей перпендикулярно к площади этой поверхности, называется давлением.

Авторы учебника испытывают, так называемой мнемонический прием: , давление – p, сила – F, площадь – S.

Очень важно для закрепления данного понятия решать задачи не только количественного, но и экспериментального характера.

Далее рассматривается вопрос о давлении газа. Подчеркивается, что давление газа на стенки сосуда обусловлено ударами молнии и зависит от их числа (плотность газа) и скорости движения (температуры). Это положение подтверждается опытом.

Рассмотрим закон Паскаля. Этот закон является основным законом аэрогидродинамики и является теоретической основой для изучения практически всех вопросов, связанных с движением в жидкостях и газах. Авторы учебника предлагают изучать этот закон с мысленного эксперимента. (равномерно распределенный газ – сжатие газа, промежуточный этап – неравномерное распределение, снова равномерное распределение).

На основе мысленного эксперимента формулируется закон Паскаля:

Давление, производимое на жидкость или газ, передается без изменения в каждую точку жидкости или газа.

Демонстрируется опыт с шаром Паскаля. Необходимо подчеркнуть, что закон Паскаля – количественный закон, но на первом этапе его изучения нельзя показать учащимся количественный вывод но, так как они не знают устройство и принцип действия манометра. Следовательно после изучения манометров, можно вернуться к этому вопросу.

После изучения закона показывают его практическое применение, на примере гидравлического пресса.

Давление в жидкости и газе.

Когда идет речь о законе Паскаля, там говорится о передаче жидкостью или газом внешнего давления, но кроме давления, производимого на жидкость из вне, можно говорить о давлении внутри жидкости, обусловленном его притяжением к Земле (весовое давление).

При изучении данного вопроса можно организовать поисковую деятельность в такой последовательности:

а) с помощью опытов разбирают следующие вопросы: "Только ли вода давит на дно и стенки сосуда"; б) существует ли давление внутри жидкости; в) от чего оно зависит; г) каково давление внутри жидкости на одном и том же уровне.

С помощью опытов приходим к выводу, что весовое давление зависит от рода жидкости и глубины погружения. Можно формулу для определения давления вывести теоретически:

Для того, чтобы учащиеся усвоили эту формулу необходимо решать ряд задач.

Сообщающиеся сосуды легко усваиваются учащимися.

Атмосферное давление.

С этим понятием учащиеся уже встречались на уроках геометрии. На уроках физики они рассматривают физическую сущность атмосферного давления. Его причины, способы измерения. При изучении данной темы необходимо решить два вопроса: 1. Показать, что атмосферное давление существует. Это можно доказать с помощью опытов: поднятие воды под поршнем, фонтан, опыт с магденбургскими полушариями. Данный материал богат исторически. Близко к понятию атмосферного давления подошел Галилей, решая задачу, почему насосы поднимают воду с глубины, не превышающей 10 метров. 2. Способ измерения атмосферного давления. Опыт Торричелли по измерению атмосферного давления принадлежит к фундаментальным опытам. Показать этот опыт невозможно, поэтому о нем рассказывается, используя плакаты (ртуть…)

Действие жидкости и газа на погруженное в них тело.

К изучению данной темы можно подойти различными способами. Рассмотрим один из них.

Изучение данной темы можно начать, проделав ряд опытов: 1. При погружении мяча в аквариум с водой, учащиеся убеждаются, что мяч всплывает. Ответ: возникает выталкивающая сила со стороны жидкости (газа). 2. Берут металлический груз из набора гирь, подвязанного на нити, и погружают в воду, от не всплывает, а погружается на дно. Вопрос: Действует ли в этом случае выталкивающая сила. Затем переходят к нахождению значения этой силы. Это можно сделать, используя различные методические приемы: 1. В начале теоретически находят значение этой силы, а затем на опыте подтверждают. 2. Рассматривают условие плавания тел, рассматривая 3 случая: Выталкивающая сила, больше, равна и меньше веса тела.

2. Методика изучения темы «Первоначальные сведения о строении вещества» в 7 классе.

В связи с конкретно-образным мышлением учащихся данного возраста на первых порах трудно убедить их в объективном существовании атомов, молекул, электронов – этих чувственно не воспринимаемых частиц вещества. Для преодоления этой трудности необходимо прежде всего убедить семиклассников в том, что наши органы чувств при непосредственном восприятии объектов не всегда дают верную информацию о свойствах этих объектов. Например, глядя на густое дерево издалека, мы воспринимаем его крону в виде сплошного тела и, только приблизившись к дереву, начинаем различать отдельные листья.

Поэтому тот факт, что мы видим окружающие нас тела сплошными, еще не означает, что они таковы на самом деле Необходимы опыты, позволяющие дать обоснованный ответ на вопрос о строении вещества.

Опытов, подводящих к догадке о дискретном строении вещества, может быть проделано много, например - уменьшение объема газа при сжатии, расширение твердых тел, жидкостей, газов при нагревании, уменьшение их объема при охлаждении, уменьшение суммарного объема воды и спирта при их перемешивании и др. Обязательными являются опыты, показывающие возможность дробления вещества на все более и более мелкие кусочки (дробление куска мела, получение муки, растворение краски в воде и др.), так как молекула вводится как предел дробимости данного вещества.

В данной теме учащиеся по существу впервые встречаются с такими малыми размерами, как размеры молекул, и осознать, образно представить частицы столь малых размеров они не в состоянии. Поэтому не имеет смысла приводить числовое значение размеров молекул. Лучше сравнить эти размеры с размерами объектов, хорошо знакомых ребятам из жизненной практики. Например, можно сказать, что молекула во столько раз меньше яблока среднего размера, во сколько раз яблоко меньше земного шара, или: если мысленно увеличить размеры молекулы воды так, чтобы она выглядела шариком радиусом 1 мм, то при этом молекулы, из которых состоит бумага, выглядели бы как веревка толщиной 1 см и длиной до 10 м.

Большую роль в формировании правильных представлений о размерах молекул играет фронтальная лабораторная работа "Измерение размеров малых тел". При ее выполнении учащиеся знакомятся с методом рядов при определении размеров малых тел (горошин, крупинок, диаметра проволоки и др.) и самостоятельно рассчитывают размер молекулы, работая с фотографиями, приведенными в учебнике. Эти фотографии, сделанные с помощью электронного микроскопа, должны показать учащимся, что объективное существование молекул и атомов – в настоящее время твердо установленный факт.

О том, что молекулы движутся, школьники могут догадаться сами, если им предложить объяснить причину распространения быстро испаряющихся пахучих веществ. Догадку учитель должен рассматривать как гипотезу, которая может быть подтверждена или опровергнута опытом. Опыты по диффузии газов и жидкостей описаны в методической литературе. Об опыте

по диффузии твердых тел рассказывается во фрагменте "Диффузия" кинофильма "Молекулы и молекулярное движение".

Весьма важным элементом знаний, приобретаемых учащимися при изучении темы "Первоначальные сведения о строении вещества", является знание о связи скорости движения молекул с температурой тела. На это положение опираются при рассмотрении способов изменения внутренней энергии тела (VIII класс). Догадаться о связи скорости движения молекул и температуры тела учащиеся тоже могут самостоятельно, наблюдая за образованием разных объемов окрашенной воды при растворении одинаковых кусочков грифеля химического карандаша в холодной и теплой воде. Предположение о том, что при более высокой температуре молекулы движутся быстрее, высказанное учащимися, следует рассматривать как гипотезу и предложить им придумать дома опыт для ее проверки.

Семиклассники должны хорошо понимать, что теплая вода состоит из таких же молекул, что и холодная. Разница заключается лишь в скоростях движения молекул.

К догадке о взаимном притяжении молекул можно подвести учащихся вопросом: почему же тела, состоящие из молекул, между которыми есть промежутки, не рассыпаются? Чтобы заострить внимание на расстоянии, при котором притяжение между молекулами становится заметным, целесообразно для проверки предположения, высказанного в ответе на поставленный вопрос, взять сначала две стеклянные трубочки и показать, что при их сближении они "не слипаются", а затем то же самое проделать с двумя кусочками пластилина.

Об отталкивании молекул школьники тоже могут догадаться самостоятельно, если им предложить объяснить опыты, обнаруживающие упругость газов, малую сжимаемость жидкости, твердых тел и др.

Таким образом, основные знания в этой теме учитель не должен давать в готовом виде, а, умело создавая проблемные ситуации с помощью эксперимента, побуждать учащихся искать пути решения проблемы, разрабатывать, планировать и проводить эксперимент с целью проверки высказанных гипотез, анализировать его результаты. Только в этом случае семиклассники будут осваивать эмпирический метод познания.

Вместе с тем в данную тему входят и такие научные факты, экспериментальное обоснование которых в данном курсе невозможно Это следующие утверждения, молекулы одного вещества одинаковы, молекулы состоят из атомов, атомы состоят из элементарных частиц Эти утверждения дают догматически.

Для проверки знаний по данной теме лучше всего воспользоваться заданиями с выбором ответа, поскольку учащиеся еще не успели научиться свободному обращению с новой для них физической терминологией и будут затрудняться в выражении своих мыслей письменно.

Изучение темы целесообразно завершить уроком-конференцией, на которой семиклассники в коротких выступлениях расскажут о жизни и деятельности М. В. Ломоносова и его работах по изучению строения вещества.

3. Научно-методический анализ и методика формирования понятий тема: «Тепловые явления» в 8 классе.

При изучении данной темы учащиеся знакомятся с рядом понятий: теплота, количество теплоты, теплоемкость, теплопередача, конвекция и т.д. при изучении данной темы используется политехнический материал, изучается двигатель внутреннего сгорания, паровая турбина, паровое отопление.

Рассматривая методику изучения некоторых вопросов данной темы:

3.1. Хаотичное, тепловое движение молекул, температура.

Приступая к изучению данного вопроса необходимо повторить с учащимися основные положения МКТ. Учащиеся вспоминают, что молекулы находятся в непрерывном хаотическом движении. Такое движение получило название теплового. Напоминаем, что скорость движения зависит от температуры. Затем, переходим к температуре. В 8 классе авторы учебника Перышкин, Родина не дают определения температуры, так как они не вводят понятия теплового равновесия. Достаточно, если учащиеся воспримут понятие температуры, как о степени нагретости тел, ознакомятся с устройством и принципом действия термометра. На опыте объясняется учащимся следующую демонстрацию: берут 3 одинаковых сосуда, в первом – нагретая вода, во втором – комнатной температуры, в третьем – холодная. Опускаем палец. В субъективности теплового ощущения ученики убеждаются на этом опыте. Из этого можно сделать вывод: необходимы специальные приборы – термометры – принцип действия которых основан на тепловом расширении. Вместе с учащимися выяснить правила измерения термометром. 1) каждый термометр предназначен для измерения температуры только в определенных пределах. 2) нельзя пользоваться термометром, если измеряемая температура выше или ниже установленных для данного прибора значений. 3) отсчет по термометру нужно производить через некоторое время. 4) при измерении температуры термометр (кроме медицинского) не должен извлекаться из среды, температура которой измеряется. 5) следить за правилами расположения глаза.

Полезно сообщить учащимся некоторые значения температур встречающихся в природе и технике.

3.2. Внутренняя энергия тел и способы ее измерения

Внутренняя энергия – это одно из фундаментальных понятий в физике. К формированию этого понятия можно подойти различными путями, например, авторы учебника формирование этого понятия начинают с опыта о кажущемся нарушении закона сохранения энергии при соударении неупругих тел. Опыт: шар падает на спальную плиту. Непонятно, до удара, шар и стальная плита обладали внутренней энергией. Второй способ: используется идея о том, что работа представляет собой меру изменчивости или превращения энергии. Если тело способно совершить работу, то оно обладает энергией. Здесь можно предложить опыт с картофелем пистолетом (колба закрывается картофельной пробкой и помещается под колпак воздушного насоса, откачав воздух, пробка вылетает). Возникает вопрос: Обладал ли воздух в колбе энергией? (Да).

Далее дают определение: Энергия движения и взаимодействия частиц, из которых состоит тело называется внутренней энергией.

Дальнейшая задача состоит в том. Чтобы ознакомить учащихся со способами измерения внутренней энергии. Для этого проводится ряд опытов: нитью натирают цилиндр и резиновая пробка вылетает; в сосуд наливают немного воды, накачивают в него воздух, пробка вылетает и в сосуде наблюдается пар; в шарообразную колбу с изогнутым концом, в трубку наливается вода (капелька) держа колбу в руках капелька будет перемещаться по трубке. На основе опытов приходим к выводу, что внутреннюю энергию можно изменить двумя способами: теплообмен и совершение работы.

Далее дают определение: Процесс изменения внутренней энергии при котором над телом совершается работа, а энергия передается от одних частиц к другим называют теплопередачей.

Виды теплопередачи: теплопроводность, конвекция, излучение.

Теплопроводность. Из жизненного опыта ученикам известен процесс передачи энергии от одного тела другому. Однако, они не подставляют себе различия тел по теплопроводности. Поэтому необходимо рассмотреть этот вопрос, используя опыт: берут стальную и медную проволоки, на равных расстояниях приклеивают парафином (пластилином) спички. Из опыта дел вывод: разные тела обладают разной теплопроводностью. При изучении вопроса можно сделать проблемную ситуацию: в картонной коробке кипятят воду.

Полезно также подчеркнуть, что при теплопроводности происходит перенос энергии, связанной с хаотическим движением микрочастиц, само же вещество не переносится. Для закрепления материала решают качественные задачи.

Конвекция. При изучении конвекции можно предложить следующие опыты: U образная трубка с перегородкой в верхней части, заполняется водой, выше уровня перегородки, затем с одного конца внизу нагревается (в трубки помещаются марганцовка, в одну трубку к низу, в другую сверху…); в трубку с двух сторон вставляют пробки с термометрами и начинают ее нагревать (термометр, находящийся выше покажет большую температуру). При конвекции происходит перенос вещества.

Для закрепления материала авторы учебника рассматривают образование дневных и ночных бризов, а в технике – образование тяги в дымоходе, конвекция в водяном отоплении.

Излучение. Излучение, как вид переноса, связано с излучением и поглощением частицами вещества электромагнитных волн и поэтому не может быть объяснено обстоятельно 8-классникам, поэтому при ознакомлении учащихся с этим видом теплопередачи, следует проводить широко экспериментально. Здесь можно поставить проблемный опыт. Капля жидкости в трубке термоскопа перемещается вправо, указывая на расширение воздуха в термоскопе от нагревания. Формулируют проблему: "Почему капля в термоскопе перемещается и тогда, когда нагреватель расположен на одном и том же уровне с термоскопом?". Подчеркивается, что в данном случае тепло передается от нагретого тела с помощью невидимых глазом лучей – тепловых лучей. Здесь же подчеркивается, что при излучении наличие среды необязательно, перенос энергии может происходить и в вакууме (передача энергии от Солнца к Земле).

Количество теплоты. Единицы количества теплоты. Процесс совершения механической работы и процесс теплопередачи имеют общий признак – изменяют внутреннюю энергию тела.

Меру изменения внутренней энергии путем совершения работы назвали количеством работы, а меру изменения внутренней энергии в процессе теплопередачи назвали количеством теплоты.

Далее выясняют от чего зависит количество теплоты Q полученное или отданное телом. Для расчета количества теплоты необходимо ввести понятие удельной теплоемкости. Необходимо выяснить с учащимися, что количество теплоты, полученное (отданное) телом при теплопередаче зависит от рода вещества. Эту зависимость характеризую. Особой величиной, называемой удельной теплоемкостью вещества. Это можно проверить, проводя следующий эксперимент: используют прибор Тиндаля и замечают, что алюминиевый цилиндр погружается больше в парафин, затем железный и медный. Делают вывод: тела из разных веществ, но одной массы, отдают при охлаждении и требуют при нагревании на одну температуру разное количество теплоты.

После этого вводим понятие удельной теплоемкости. Для закрепления необходимо работать с таблицей удельных теплоемкостей, ставя следующие вопросы: 1. Что означает, что удельная теплоемкость воды 4200 Дж/ кг К? 2. Найдите вещество для которого теплоемкость наибольшая и т.п.

Введя понятие удельной теплоемкости, можно рассчитать количество теплоты необходимое для нагрева тела массой 1 кг на температуру для случая m вещества: . Далее изучается испарение, кипение, находят количество теплоты необходимое для плавления, для парообразования и т.д. Необходимо расплавить лед, испарить воду.

AB – процесс нагревания Q1=mcл(T-T1); BC – плавление Q2m; CD – нагревание Q3=mcH2O(T2-To); DE – парообразование Q2m

4. Методические особенности изучения темы: «Электрические явления» в 8 классе.

Данная тема представляет собой двух логично завершенных и в то же время связанных друг с другом частей. В первой части рассматривают начальные сведения о строении атомов, а во второй – простейшие электрические цепи, вводят ряд понятий: сила тока, напряжение, сопротивление, работа и мощность тока, изучается закон Ома для участка цепи, а также понятия об электрическом и магнитном полях.

При изучении данной темы учащиеся получают ряд практических умений и навыков: собирать простейшие электрические цепи, измерять силу тока и напряжение с помощью амперметра и вольтметра.

Законы электрического тока устанавливаются опытным путем, что позволяет подчеркнуть значение опыта, как источника знания. Здесь же изучаются элементы электронной теории, которые применяются для объяснения природы электрического тока.

Рассмотрим некоторые методические аспекты изучения данной темы:

Электрический заряд – является сложным физическим понятием для учащихся. К этому понятию учащихся подводят на основе опытов по электризации тел. На основе опытов по электризации различных тел (стекла, эбонита, капрона, и т.д.) ищут ответ на следующие вопросы: 1. Только ли эбонит при натирании шерстью электризуется? 2. Обязательно ли натирать тела шерстью? 3. Электризуются оба или одно из натертых тел? 4. Зависит ли род заряда накопленного на поверхности тела, от вещества тела соприкасающегося с данным? И т.д.

На основе этого приводим учащихся к выводу: электрический заряд всегда связан с материальным носителем – телом, частицей и т.д. и с другой стороны характеризует свойства материальных носителей "притягивать" к себе другие тела (то есть способность тел к электромагнитному взаимодействию) – последнюю фразу учитель не произносит, а с другой стороны является количественной мерой этого взаимодействия.

Понятие электрического поля вводят как и понятие заряда без определения, ссылаясь на работы Фарадея и Максвелла учитель утверждает, что в пространстве где находится электрический заряд, существует электрическое поле. Взаимосвязь между зарядами осуществляется электрическим полем. На опыте выясняется, что вблизи заряженных тел действует поле сильнее, а при удалении от них поле слабее.

Электрон. Строение атома. При введении этого понятия поступают так как и при введении понятия "молекула". Для этого показывают, что электрический заряд делим, то есть существует наименьшая заряженная частица. Этот опыт воспроизводится учащимися, но далее детализировать данные опыта нет необходимости. Поэтому далее учитель подчеркивает, что с помощью очень точных экспериментов такая частица была обнаружена и назвали ее электрон.

Напоминают, что тела состоят из атомов и молекул, следовательно электрон должен быть внутри атомов. Эту гипотезу необходимо проверить экспериментально, так как опыт Резерфорда исключен из программы 8 класса, следует в общих чертах рассказать об этом опыте. В результате этого опыта была дана планетарная модель атома, которая напоминает нашу Солнечную систему. Для того, чтобы создать у школьников представление о размерах атомов, целесообразно прибегать к приему сравнения. Если бы атом увеличивался так, чтобы ядро приняло бы размеры 10 копеечной монеты, то расстояние между ядром и электроном стало бы равно 1 км.

Учащиеся должны знать порядковый номер в таблице Менделеева характеризует заряд ядра атома и соответствующее число электронов в атоме. Для моделирования атома необходимо рассказать, что ближайшая к ядру оболочка может содержать не более 2, а следующая не более 8 электронов. Можно предложить учащимся вылепить из цветного пластилина модели атомов Н2 и Не. С помощью их можно показать появление "+" и "-" ионов.

Учащиеся знают, что тела состоят из молекул, атомов. В металлах часть электронов слабо связана с ядрами атомов и поэтому они становятся свободными. Следовательно в узлах кристаллической решетки расположены ионы, а между ними свободно движутся электроны. Так как в обычных условиях отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду всех ионов решетки, то в обычных условиях металлы электрически нейтральны, но если создать электрическое поле, то электроны начнут двигаться упорядоченно. Все это позволяет дать следующее определение: электрический ток в металлах представляет собой упорядоченное движение свободных электронов.

Далее рассматривают источники электрического тока. Подчеркивают, что в любом источнике тока совершается работа по распределению положительных и отрицательных частиц. Данная работа совершается силами не электрической природы.

Рассмотрим методику формирования некоторых понятий данной темы:

Сила тока. Амперметр. Действия электрического тока (тепловое, химическое, магнитное, механическое) могут проявляться в разной степени – сильнее или слабее. Используя различные опыты, можно показать, что степень действия электрического тока зависит от заряда, прошедшего по цепи за 1 секунду и дается определение: электрический заряд, проходящий через поперечное сечение проводника в единицу времени определяет силу тока в цепи. Таким образом приходим к следующему определению: Сила тока равна отношению электрического заряда, прошедшего через поперечное сечение проводника ко времени его прохождения.

I=q/t. За единицу силы тока принимают силу тока, при которой отрезки таких параллельных проводников в 1 м взаимодействуют с силой 2*10-7 Н, эту единицу называют ампер.

После введения понятия сила тока рассматривают амперметр и знакомятся с правилами работы с ним.

Напряжение. Вольтметр. Понятие напряжение с трудом воспринимается учащимися. В методической литературе имеется описание различных методов введения этого понятия. Авторы учебника Физика – 8 используют энергетический подход. Опираясь на знания учащихся о том. Что чем больше сила тока в цепи, тем интенсивнее его действие, тем большую работу он совершает, больше его мощность. Можно предложить следующий опыт: подбирают лампочку на 3,5 В или 6,3 В и включают в цепь, измеряя с помощью силу тока. Затем берут лампочку на 220 В и включают в цепь, опять измеряя силу тока, лампочку надо подобрать таким образом, чтобы сила тока была одинаковой. Лампочка на 220 В дает больше света и тепла, следовательно мощность I (работа I) зависит не только от I, но и от другой физической величины – напряжения U. Напряжение – это физическая величина, характеризующая электрические поле, которое создает ток. Формулу для нахождения напряжения можно записать следующим образом: U=A/q – более научно. U=P/I, 1 В = 1 Дж / Кл. Далее знакомят учащихся с вольтметром и правилами работы с ним.

Сопротивление. Введение этого понятия начинают с постановки опытов, в которых используют источник тока, магазин сопротивлений, амперметр, вольтметр, ключ. В начале показывается, что сила тока в проводнике прямо пропорциональна напряжению на концах проводника. Затем ставят вопрос: Зависит ли сила тока от свойств проводника? Опыт показывает, что сила тока зависит от свойств проводника. Далее утверждают, что зависимость силы тока от свойство проводника объясняется тем, что различные проводники обладают различными сопротивлениями. Следовательно сопротивление проводника не определяют, а вводят описательно. Далее говорят о единицах применения сопротивления.

Закон Ома устанавливают экспериментально. Вначале показывают зависимость силы тока от напряжения при постоянном сопротивлении. Затем выясняется зависимость силы тока от сопротивления, при постоянном напряжении, выводят I = U / R.

На опыте устанавливается от чего зависит сопротивление проводника Rl/S

5. Методика изучения темы «Световые явления» в 8 классе.

Изучение данной темы имеет большое познавательное политехническое и воспитательное значение. Мы познаем мир, благодаря свету и нашим зрительным ощущениям.

На законах оптики основана оптическая и осветительная техника. Данная тема имеет огромное значение для понимания природы света.

При рассмотрении данной темы решается две проблемы: 1. Как распространяется свет от источника в однородной среде? 2. Как ведет себя свет на границе раздела двух сред?

Поэтому и данный материал состоит из трех частей: прямолинейность распределения света; законы отражения; явления преломления света.

Остальной материла является следствием этих положений. При рассмотрении данного раздела не изучаются такие вопросы как понятие о скорости и свойствах, явление разложения белого света в спектр, объяснение цвета тел, явлений интерференции и дифракции.

При изучении данной темы все время приходится оперировать понятиями световой луч или луч света. Известно, что световой луч – это линия, вдоль которой распространяется световой поток. (Это определение в 8 классе не дается) Но в то же время, необходимо разъяснить школьникам, что световой луч это идеализация, в действительности имеем дело со световыми пучками. Необходимо отметить, что в геометрической оптике имеются и другие идеализации: линия изображения, точечный источник света.

Изучение темы световые явления начинают с напоминания фактов прямолинейного распространения света. Конечно школьникам это известно из повседневной жизни, но на уроке необходимо обязательно использовать эксперимент. Напоминает учащимся о том, что о прямолинейности распространения света. Писал еще основатель геометрии Евклид за 300 лет до нашей эры и вероятно понятие о прямой линии возникло из представления прямолинейности распространения света в однородной среде. Здесь можно показать ряд опытов и убедить школьников в этом. Рассказать о Солнечных затмениях. Приступая к изучению законов отражения целесообразно показать явления отражения и преломления света на границе двух прозрачных сред, показать как они происходят одновременно. Опыт сопровождаем рисунком (выпуклая линза, с плоской стороны падает луч, подписываются падающий, отраженный и преломленный лучи). При демонстрировании опыта с оптическим диском необходимо обратить внимание учащихся, что при падении пучка света на границу двух сред (в нашем случае воздух – стекло) пучок раздваивается первая часть возвращается в среду (явление отражения), в другая проникает во вторую среду, изменив свое направление (преломление).

Урок по изучению законов отражения можно построить таким образом, чтобы основные выводы ученики сделали сами, проводя с ними фронтальную лабораторную работу. На основе опыта формулируется закон отражения: Падающий и отраженный лучи и перпендикуляр восстановленный в точке раздела сред лежит в одной полуплоскости, причем угол падения равен углу отражения.

Затем рассматриваются виды отражения: зеркальное и диффузионное. На основе законов отражения строят изображение в плоском зеркале. Необходимо сделать акцент на то, что плоское зеркало это приспособление для изменения хода лучей света, но не может преобразовывать пучки света. Способность органов зрения животных видеть предметы только прямолинейно, когда от предмета свет непосредственно падает в глаз относится к их врожденной способности. Например, глядя на плоское зеркало мы не смотрим на предмет, находящийся перед зеркалом, поэтому свет от предмета не посредственно не воздействует на глаз, а воздействует на него, только после отражения от зеркала, так как отраженный от зеркала свет распространяется прямолинейно, то благодаря зрительной привычке, наш кажущейся предмет, находится на прямой линии а именно за зеркалом, а не там, где он находится на сомом деле. Физически существует только действительное изображение. Здесь исходят их энергетических представлений. На месте возникновения действительного изображения происходит на самом деле концентрация энергии света. Мнимое изображение не может быть получено на экране так как в данном месте энергия не концентрируется. При Изучении явления преломления света на опыте показываем, что падающий, преломленный лучи лежат в одной плоскости. Здесь же показывается, что происходит с преломленным лучом, если он падает из менее плотной среды в более плотную и наоборот.

Линзы в 8 классе рассматривают лишь экспериментально, как следствие преломления. Здесь вводят понятия фокус, оптическая сила линзы. Формула линзы не дается (хотя в сильном классе можно дать). Перед тем, как изучать полученное изображение с помощью линзы проводят ряд демонстраций, выявляют свойства лучей, проходящих через линзу. 1. Лучи параллельные главной оптической оси после прохождения через линзу пересекаются в фокусе. 2. Луч проходящий через фокус, после прохождения линзы, становится параллельным главной оптической оси. 3. Луч проходящий через центр линзы проходит без изменения. 4. Свойство обратимости луча.

При построении изображения в собирающей линзе рассматривают три случая: 1. Предмет находится за двойным фокусом рассматриваемой линзы. 2. Предмет находится между фокусом и двойным фокусом. 3. Предмет находится между фокусом и линзой. Строят изображение в рассеивающей линзе. В завершение темы рассматривается вопрос устройства глаза и фотоаппарата.

6. Методические особенности изучения «Волновой оптики».

Темой "Световые волны" начинается изучение вопросов волновой оптики. При этом совершается переход от формального описания световых явлений методами геометрической оптики и их объяснению с помощью волновых представлений о природе света. В этой теме могут быть выделены следующие части: скорость света в вакууме и в веществе; подтверждение справедливости принципа Гюгенса; явление отражения,, преломления, дисперсия света, как проявление его волновых свойств; интерференция и дифракция – прямое доказательство наличия у света волновых свойств.

В качестве исходного факта, на основании которого можно утверждать, что свет представляет собой электромагнитную волну, следует использовать факт совпадения экспериментально найденного значения скорости света со скоростью электромагнитной волны. Поэтому начинать изучение данной темы с вопроса о определении скорости света. Обычно знакомят учащихся с одним из лабораторных способов (опыт Физо) определения скорости света и астрономического метода (Рюмера). Было бы желательно здесь использовать историзм, рассматривая идеи Галилея о определении скорости света.

При рассмотрении опытов акцент должен быть сделан не на детальное изучение опытов, а на идею опытов и на полученный результат.

Доказательство волнового характера исследуемого процесса – наличие для этого процесса явлений интерференции и дифракции. При рассмотрении интерференции необходимо напомнить, что устойчивую интерференционную картину можно наблюдать для когерентных источников колебаний, то есть равенство частот колебаний, сохранение во времени разности фаз колебаний.

При рассмотрении интерференции волн возникает вопрос: как пользуясь обычными некогерентными излучениями света создать взаимно когерентные источники и получить устойчивую интерференционную картину? Ее можно получить разделением светового пучка от обычного источника света на два, которые потом сводятся вместе и они интерферируют.

- разность хода.

, , .

max: , , .


ОПС (нет странички….)


Далее переходим к рассмотрению вопроса о дифракции. Напоминаем основные условия, при выполнении которых возможно наблюдение дифракции волн: размеры препятствия должны быть соизмеримы с длинной волны, то есть если длина волны λ проходимая через отверстие D (ширина дифракционной щели является размером препятствия), от которого наблюдатель уделен на расстояние L, то дифракцию наблюдают не только при условии D приближенно равно λ, но и при более общем условии D2< либо = L λ.

7. Анализ и изучение основных понятий кинематики (анализ методических подходов в описании движения в механике, методика введения основных понятий кинематики).

Раздел Кинематика очень сложен для учащихся, с него начинается изучение механики, после интересного, нематематизированного курса физики 7-8 классов происходит резкий скачок. Учащиеся сталкиваются с множеством новых понятий, формул, усложняется математический аппарат физики.

Кинематика раздел механики, котором решается часть ее основной задачи. Не пользуясь еще знаниями динамики для нахождения ускорения, а считая его данным определяют положение тела в любой момент времени по заданным начальным условиям.

Основное образовательное значение темы заключается в овладении общими методами решения этой задачи, это требует овладения учащимися рядом физический понятий и модельных представлений: материальная точка, система отсчета, перемещение, скорость, ускорение и т.д.

Одна из особенностей изучения данного раздела заключается в том, что в механике достаточно полно представляется физическая теория. Поэтому учителю представляется возможность на примере механики проанализировать, проиллюстрировать структуру физической теории. В любой физической теории в соответствии с этапами цикла познания в учебном процессе можно условно выделить три части: основание, ядро, выводы.

Общая схема курса механики: Основание: описание положения материальной точки в пространстве, ускорение, сила, сила, наблюдение и эксперимент, подводящие к знанию. Ядро: законы Ньютона, закон всемирного тяготения, законы сохранения импульса и механической энергии. Выводы: применение законов Ньютона и сохранения в конкретных случаях движения и равновесия.

На эту схему следует обратить внимание учащихся для того, чтобы в конечном счете такая схема стала доминирующим алгоритмом в мышлении учащихся. Необходимо помнить, что основные понятия, формируемые в данной теме применяются на протяжении значительной части курса физики, поэтому от их усвоения зависит успешность овладения учащимися всем содержанием физического образования.

В механике существуют различные способы описания движения: 1) с помощью пути, как функции времени S = S (t); 2) с помощью радиус – вектора r = r (t) и его изменение во времени.

Однако описать движение по среднему пути пройденному вдоль траектории, как функции времени не всегда возможно, так как траектория движения может быть неизвестна. К тому же при описании движения, пути, пройденного вдоль траектории, как функции от времени S = S (t), основные кинематические характеристики (скорость, ускорение) вводят в два этапа: сначала как скалярные величины, а затем как векторные. При описании движения с помощью радиус вектора, как функции от времени, основные кинематические величины вводят сразу, как векторные величины.

При формировании понятий скорости, перемещения, ускорения в 9 классе важно, чтобы векторный характер этих величин был усвоен учащимися достаточно хорошо, так как знание векторного характера необходимо для понимания законов динамики.

Напомним, что движение тела может быть описано полностью, если найден метод описания положения движущегося тела в пространстве в любой момент времени, для этого нужно: 1. Тело отсчета, то есть тело относительно которого рассматривается изменение положения движущегося тела. 2. Определить положение тела относительно тела отсчета.

Далее вводят понятие материальной точки: тело размерами которого в данных условиях можно пренебречь, считая при этом, что его масса сосредоточенна в одной точке. Тело отсчета, связанная с ним система координат и прибор для отсчета времени образуют систему отсчета. Вектор соединяющий начальное положение тела с каким0либо последующим его положением называется перемещением.

8. Анализ и изучение основ кинематики (изучение видов движения и уравнений движения, идея относительности в кинематике).

Рассмотрим некоторые методы особенности изучения видов движения в кинематике. В начале изучается равномерное прямолинейное движение. После вводится понятие скорости для этого вида движения, появляется возможность показать, как решается основная задача кинематики для прямолинейного движения. . Далее строят графики зависимости скорости от времени и координаты от времени.

Далее рассматривается равноускоренное движение. Дают определение: Прямолинейное движение, при котором скорости тела за любые равные промежутки времени изменяются одинаково называется равноускоренным прямолинейным движением. Быстроту изменения скорости характеризуют величиной,. Обозначенной a и называемой ускорением. . Для того, чтобы решить основную задачу кинематики необходимо найти перемещение при равноускоренном движении. Имеются различные пути для решения этого вопроса. Рассмотрим некоторые из них: 1) Автор учебника Никоин предлагает найти перемещение с помощью графической зависимости V (t) для этого движения: , зная перемещение решается главная задача механики: . 2) Из выражения для определения ускорения находим мгновенную скорость . Следовательно в равноускоренном движении значение мгновенной скорости, которую тело имеет через равные промежутки времени образуют такой ряд чисел, который получается путем прибавления к предыдущему значению a. Это означает, что рассматриваемое значение мгновенной скорости образует арифметическую прогрессию. Следовательно скорость прямолинейного равноускоренного движения может быть найдена следующим образом: , , , .

Законы кинематики могут быть найдены, используя следующий методический подход. Используя метод опережающего обучения вначале вводится понятие средней и мгновенной скорости, среднего и мгновенного ускорения. , если время устремить к нулю, скорость – производная пути по времени, ускорение – вторая производная пути по времени.

Затем изучаются законы Ньютона и на основе их решается основная задача кинематики для каждого вида движения. Согласно первому закону Ньютона, если равнодействующая сил равна нулю, то тело либо покоится, либо движется прямолинейно и равномерно, в этом случае средняя скорость равна мгновенной. .

Согласно второго закона Ньютона , .

- формула Галилея.

Задачи по кинематическому движению можно условно разбить на три группы: 1. Задачи по кинематическому равномерному движению; 2. Задачи по кинематическому равноускоренному движению; 3. Графические задачи.


9. Методика изучения основных понятий и законов динамики (Первый закон Ньютона, масса).

Одним из фундаментальных понятий динамики является масса. Возникает вопрос: как ввести это понятие в школе? С понятием масса ученики встречались в 7 классе. На основе взаимодействия двух тележек делаем, что если в результате взаимодействия тележки разошлись на одно и то же расстояние от первоначального положения, то говорят, что их масса одинакова. Здесь же рассматривают способы определения массы с помощью рычажных весов.

В 9 классе понятие массы развивается дальше. Возникает вопрос: С какого же проявления следует ввести понятие массы? Может быть следует ввести понятие массы, используя формулу Эйнштейна E=mc2, нет, так как это явление серьезно обобщено и для его осмысления необходимо определенные знания. Если ввести массу как количество вещества, содержащегося в теле, то тела одинаковой массы и при одинаковых условиях имеют одинаковое количество частиц, но если условия разные, то равенство частиц нарушается.

Поэтому вводим понятие инерциальной массы. В начале даем понятие инертностьсвойство, присущее всем телам. Состоит оно в том, что доя изменения скорости тел требуется некоторое время… Напомним учащимся, что тела после взаимодействия приобретут ускорения: , после взаимодействия , . Затем дают определение: масса тела – это величина, характеризующая его инертность. Равна отношению ускорения эталона к ускорению тела (выраженного в кг), полученного ими после взаимодействия.

Первый закон Ньютона формулируется так: Существуют такие системы отсчета относительно которых поступательно движущиеся тело сохраняет свою скорость постоянной, если на него не действуют другие тела или действие их компенсируется. Такие системы отсчета, относительно которых тела движутся равномерно и прямолинейно или находятся в покое называются инерциальными. Одна из основных дидактических задач, которая стоит перед учителем разъяснить, что ни один опыт не может подтвердить закон инерции, так как не существует в природе свободных, ни с чем не взаимодействующих тел.

Традиционным опытом, который помогает учащимся осмыслить первый закон Ньютона является опыт с желобом Галилея: а) шар скатывается в кучу песка б) шар скатывается на шероховатую поверхность в) шар скатывается на гладкую поверхность. Обращаем внимание, что по мере уменьшения сопротивления движение шарика увеличивается во времени. Вывод: чем меньше взаимодействие, тем медленнее изменяется скорость.

Продолжая рассуждения (на основе мысленных экспериментов) приходим к выводу, что если бы на движущиеся тело не действовали другие тела или действие других тел компенсировалось бы, то в этих случаях тело находилось бы в покое или двигалось бы сколь угодно долго.

Другая трудность изучения этого вопроса заключается в том, что первый закон является следствием второго. В основе классической механики лежит определенные представления о свойствах пространства и времени. Эти утверждения справедливы и для классической механики и для СТО. Например, утверждение об однородности и изотропности пространства относительно инерциальной системы отсчета. Однородность пространства означает, что в нем нет выделеных точек, которые отличались бы от других. Изотропность пространства означает одинаковость его свойств по всем направлениям. Это значит, что если некоторое тело свободно от внешних воздействий, покоится в какой-то момент времени относительно ИСО и сохраняет состояние покоя во все остальные моменты, то пространство однородно относительно этой системы.

10. Методика изучения основных понятий и законов кинематики (Сила, Второй и Третий законы Ньютона).

При изучении второго закона ньютона можно воспользоваться экспериментом (существует много вариантов) наиболее приемлемым для учащихся. Опыт проводим в следующей последовательности: 1. Находим зависимость ускорения от силы, когда масса постоянна – ускорение прямо пропорционально силе. 2. Зависимость ускорения от массы при постоянной силе – ускорение прямо пропорционально силе, но обратно пропорционально массе.

Во втором закон Ньютона идет речь о равнодействующей силе. При изучении третьего закона Ньютона можно использовать различные методические подходы. Известно, что тела в результате взаимодействия приобретают ускорения. Отношение ускорений равно обратному отношению масс.

Два тела действуют друг на друга с силами, направленными вдоль одной и той же прямой, равными по модулю и противоположно направлены.

К этому же уравнению можно прийти и на основе эксперимента. Опыты: на основе двух динамометров.

При изучении третьего закона Ньютона необходимо выяснить особенности сил о которых идет речь в нем: 1) так как силы приложены к различным телам, нельзя говорить о их равнодействующей; 2) силы, о которых идет речь в третьем законе Ньютона, имеют одинаковую природу.

Часто приходится решать задачи когда в условии дается система связанных тел. Рассмотрим случай, когда тела движутся равномерно без трения. Если при этом даны массы обеих тел и необходимо найти ускорения тел и силу натяжения нити, то система уравнений будет решаться в том случае, если нить считается нерастяжимой и невесомой. Не растяжимость нити позволяет считать ускорение одинаковым. Невесомость нити позволяет считать силы равными.


11. Анализ и методика изучения законов сохранения в механике (закон сохранения импульса и энергии).

Изучение в школе законов сохранения (ЗС) имеет большое познавательное и мировоззренческое значение. ЗС принадлежат к наиболее общим законам природы. В отличии, например, от закона Паскаля, который справедлив лишь для жидкостей и газов и других законов, имеющих ограниченную область применения. ЗС энергии и импульса выполняется во всех физических процессах.

При изучении темы Законы сохранения в механике вводятся понятия, определяющие область применимости ЗС импульса и энергии.

Замкнутая система. Физическая система считается замкнутой, если внешние силы не действуют на эту систему.

Однако, поскольку действие, например, гравитационных сил простирается до бесконечности, то очевидно понятие замкнутая система является абстракцией. Это можно пояснить следующими примерами: система тел спутник, движется вокруг Земли, электрон движется вокруг протона в атоме. В ряде случаев, когда внешней силой можно пренебречь, систему можно считать замкнутой. В замкнутой системе действуют силы, которые называются внутренними.

Консервативные силы – это силы работа которых не зависит от длины пути, а зависит только от положения начальной и конечной точек пути. К консервативным силам можно отнести нуклоновские силы, силу тяжести, силу упругости.

Система тел, в которой действует консервативная сила называется консервативной. Необходимо отметить, что если для применимости закона сохранения импульса достаточно, чтобы система тел была замкнутой, то доя применимости закона сохранения энергии, необходимо еще чтобы внутренние силы, действующие в замкнутой системе были консервативными.

Импульс силы. Импульс тела.

Согласно второму закону Ньютона , откуда (1). Из последнего выражения видно, что изменение скорости одного и того же тела зависит не только от силы, приложенной к телу, но и он времени ее действия. Это может наблюдаться на ряде опытов. При быстром выдергивании листочка бумаги из под стакана с водой, стакан остается на прежнем месте. Если привязать груз на нить и резко дернуть нижнюю нить, оторвется нижняя нить. Если в перечисленных опытах время действия силы увеличить, то даже при существенно меньших действиях силы стакан и груз получат заметные скорости. Таким образом учащиеся подводятся к понятию импульса силы – векторная величина, которая равна произведению силы на время ее действия. Из (1) следует (2), из (2) следует, что существует величина, одинаково изменяющаяся у тел разной массы, если импульс действующих сил одинаков. Эту физическую величину назвали импульсом или количеством движения. .

Затем переходят к закону сохранения импульса . Необходимо отметить, что при выводе формулы ЗС импульса учащимся надо объяснить, что в течение времени взаимодействия (столкновении) тел модули сил с которыми тела взаимодействуют, изменяются, оставаясь все время одинаковыми.

Полученный теоретический вывод иллюстрируется на опытах упругого и неупругого столкновения тел.

Интересен вывод ЗС импульса, основанный на серии опытов, подводящих учащихся к нему: а) при скатывании шара с наклонного желоба импульс приобретаемый в конечной точке прямо пропорционален скорости полета.