Катод Спиндта (katod)

Посмотреть архив целиком

Саратовский государственный университет

Им. Н.Г.Чернышевского















Курсовая работа


Катод Спиндта.







Кафедра Прикладной физики


Научный руководитель:

Мухамедов Р.Ф.

Выполнил студент 5 курса

535гр. Физ. Факультета:

Ярославкин Ю.А.











САРАТОВ 2001.



Содержание:



  1. Введение.

  2. Автоэлектронная эмиссия.

  3. Тонкоплёночные автоэмиссионные катоды. Технология и особенности протекания эмиссионных процессов.

  4. Технология изготовления катодов Спиндта.

  5. Плотность упаковки эмиттеров.

  6. Время жизни.

  7. Заключение.

  8. Список литературы.































Введение:


Стремительное развитие деловой жизни и появление новейших цифровых информационных технологий и устройств отображения информации заставляют разработчиков третьего тысячелетия совер-шенствовать способы отображения и передачи информации .

Вакуумная микроэлектроника во многом определила пути реализации самых смелых идей в использовании информационного пространства. Современного пользователя невозможно представить без компьютера и программ, на базе которых строятся современные исследования, разработки и использование мирового информационного пространства, позволяющего двигать науку .

Конечно, историю науки пишут сами люди науки. Поэтому никак не избежать субъективного подхода к изложению дате одних и тех же фактов, к подбору «значительных событий», к оценке значительности того или иного специалиста, той или иной работы для развития научного направления: ведь есть пророни своем отечестве

о которых не знают в отечествах других .

Основной доклад на первой международной конференции по вакуумной микроэлектроники сделал Айвор Броди – один из основоположников этого направления. По мнению Броди вакуумная микроэлектроника приобрела большое значение благодаря двум факторам общего характера:

  1. Возросли требования, которым уже не могут удовлетворить твёрдотельные приборы, даже после огромных исследовательских затрат, и, кроме того,

  2. Специалисты пришли к выводу, что отнюдь не будет непрактичным делать вакуумные лампы микронных и субмикронных размеров.

Как же по Айвору Броди развивалась вакуумная микроэлектроника? Он выделяет четыре основных пути её развития, которые привели к сегодняшнему состоянию.

В начале 20-х годов нашего столетия пробой заявил о себе в периодических срывах трансатлантических радиопередач, осуществляемых с помощью высоко мощных ламп Маркони. Госслинг, работавший у Маркони, исследовал этот эффект и в 1926 году опубликовал работу, в которой высказал гипотезу, что пробой вызывается электронами с выпуклостями на вольфрамовом стержневом катоде. Эти выпуклые неоднородности взрывались, вызывая пробой. Как пишет Броди, обсуждение этих результатов с профессором Фаулером из Кембриджского университета привело к Нордгейму, получившему средства на исследования, и, в конечном счете, к уравнению Фаулера – Норд гейма. Открытие того, что электроны могут вылетать с холодных катодов под действием электрических полей с высокой напряжённостью, вызвало множество проектов приборов, но прошло более сорока лет, прежде чем что-то получилось.


Настоящая работа посвящена особенностям технологии изготовления катодов Спиндта , основанная на методе создания решеток автокатодов, с использованием тонкопленочной технологии и электронно-пучковой литографии.

Решетки автоэмиссионных катодов, изготовленных из монокристаллов кремния с применением тонких металлических пленок, обладают техническими характеристиками, позволяющими их широкое применение в плоских дисплеях, сканирующих микроскопах и т.п.



Автоэлектронная эмиссия.


Автоэлектронная эмиссия (АЭ) - физическое явление, состоящее в том, что электроны покидают твёрдое тело, в котором они находятся в качестве свободных носителей заряда (это может быть металл или полупроводник), под действием сильного электрического поля, приложенного к поверхности. В случае автоэлектронной эмиссии электроны преодолевают потенциальный барьер на поверхности тела не за счет кинетической энергии теплового движения, а путем специфического квантового явления – туннельного эффекта.

В простейшем случае туннельный эффект заключается в том, что микроскопическая частица, первоначально находившаяся по одну сторону потенциального барьера (то есть области пространства, для которой полная энергия частицы превышает её потенциальную энергию Uсх), может с конечной вероятностью быть обнаружена по другую сторону барьера.

Туннельный эффект является чисто квантовым феноменом и для него отсутствует аналог в классической механике. Согласно Ньютновской механике частица с массой m не может находиться внутри потенциального барьера, поскольку из уравнения для полной энергии следует,

(1)

что соотношение выполняется только для мнимых значений импульса р. Объяснение туннельного эффекта, в конечном счёте, связано с соотношением неопределённости Гейзенберга, согласно которому квантовая частица находиться в состоянии с одновременно точно определёнными координатой и импульсом.

Неопределённости и всегда удовлетворяют соотношению

, (2)

где эргс – постоянная Планка.

Согласно этому принципу, слагаемые в правой части уравнения (1) не имеют одновременно определённых значений и могут отличаться от своих средних значений. Поэтому имеется конечная вероятность обнаружить квантовую частицу в запрещённой зоне с точки зрения классической механики области.

Туннельный эффект был одним из первых квантовых явлений, предсказанных после создания в 1926 году Э. Шредингером волновой механики. По всей видимости, первое свидетельство его существования можно найти в статье Л. И. Мандельштама и М. А. Леонтовича, которые рассматривали решение уравнения Шредингера для



модельного потенциала ангармонического осциллятора вида

при и при .

Волновая функция, описывающая свободное движение частицы слева от потенциала (при x>a). При этом, когда энергия частицы близка к значениям дискретных уровней энергии внутри потенциальной ямы, амплитуда волновой функции справа от нее резко возрастает. Это явление на современном языке носит название резонансного прохождения через потенциальный барьер.

В 1928 году Г. Гамов с помощью туннельного эффекта объяснил явление - радиоактивности тяжёлых ядер, и в том же году Фаулер и Норд гейм построили теорию холодной эмиссии из поверхности металлов. Туннельный эффект лежит в основе объяснения таких явлений, как слияние лёгких ядер при термоядерных реакциях, работы сверхпроводящего перехода Джозефсона и туннельного диода. Именно Фаулер вместе с Нордгеймом в том же 1928 году построили теорию холодной эмиссии (автоэлектронной эмиссии) с поверхности металлов.

На рис.1 приведен график потенциальной энергии электрона вблизи границы металл – вакуум при отсутствии внешнего поля и при наличии слабого и сильного внешних полей в зависимости от расстояния от поверхности металла.






U(x)










x

Уровень Ферми. 1

2



Энергетические урони, d

заполненные электро-

нами. 3




металл вакуум


Кривые 1,2 и 3 соответствуют

случаям отсутствия внешнего

поля, слабому полю и

сильному полю: d-ширина

барьера. По мере увеличения

внешнего положительного

поля понижается

высота потенциального

барьера над уровнем Ферми

и уменьшается его ширина.

Следовательно, увеличивается

вероятность проникновения

через барьер электронов,

подлетающих к нему со

стороны металла.

Иными словами ,

увеличивается число Рис.1 Поверхностный потенциальный барьер на границе

раздела металл–вакуум.

электронов, проходящих через барьер, то есть ток автоэмиссии. Подчеркнем, что в случае автоэмиссии с поверхности металла, электрическое поле не проникает в глубь него и не влияет на движение электронов в металле. Роль внешнего поля сводиться только к изменению формы потенциального барьера, уменьшению его высоты и ширины.


Тонкопленочные автоэмиссионные катоды

Технология и особенности протекания эмиссионных

процессов.

Исключительно важной для всего развития вакуумной микроэлектроники стала статья Спиндта с сотрудниками из Стэндфордского исследовательского института, опубликованная в 1976 году в журнале Journal of Applied Physics. В ней был описан метод создания решёток автокатодов с молибденовыми остриями с использованием тонкоплёночной технологии и электронно-пучковой микролитографии, а также были приведены результаты подробного экспериментального исследования полученных автокатодов. Разработанная технология позволяла изготавливать катоды, содержавшие до 5000 острий с радиусом скругления около 500 A и плотностью упаковки примерно


Случайные файлы

Файл
210.doc
18630.rtf
150661.rtf
148658.rtf
65207.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.