Гидродинамика (149484)

Посмотреть архив целиком

В тепловых процессах осуществляется передача тепла теплопередача от одного теплоносителя к другому, причем эти теплоносители в большинстве случаев разделены перегородкой {стенкой аппарата, стенкой трубы и т. п.). Количество передаваемого тепла определяется основным уравнением теплопередачи.: Q=KtmF.

В этом уравнении коэффициент теплопередачи К является суммирующим коэффициентом скорости теплового процесса, учитывающим необходимость перехода тепла от ядра потока первого теплоносителя к стенке (теплоотдачей), через стенку {теплопроводностью) и от стенки к ядру потока второго теплоносителя (теплоотдачей). Коэффициент теплопередачи определяет количество тепла, которое передается от одного теплоносителя к другому через единицу площади разделяющей их стенки в единицу времени при разности температур между теплоносителями 1 град.

Соотношение для расчета коэффициента теплопередачи можно вывести, рассмотрев процесс передачи тепла от одного теплоносителя к другому через разделяющую их стенку. На рис. 1 показана плоская стенка толщиной , материал которой имеет коэффициент теплопроводности . По одну сторону стенки протекает теплоноситель с температурой tf1 в ядре потока, по другую сторонутеплоноситель с температурой tf2. Температуры поверхностей стенки tw1 и tw2. Коэффициенты теплоотдачи 1 и 2. При установившемся процессе количество тепла, передаваемого в единицу времени через площадку F от ядра потока первого теплоносителя к стенке, равно количеству тепла, передаваемого через стенку и от стенки к ядру потока второго теплоносителя.

Рис. 1. Характер изменения температур при теплопередаче через плоскую стенку

Это количество тепла можно определить по любому из соотношений:

Из этих соотношений можно получить:

Складывая эти уравнения, получим:

откуда

Из сопоставления уравнений найдем

откуда

Величина 1/К, обратная коэффициенту теплопередачи, представляет собой термическое сопротивление теплопередаче. Величины l/1 и 1/2 являются термическими сопротивлениями теплоотдаче, а /—термическим сопротивлением стенки. Из уравнения следует, что термическое сопротивление теплопередаче равно сумме термических сопротивлений теплоотдаче и стенки.

При расчетах коэффициента теплопередачи в случае многослойной стенки необходимо учитывать термические сопротивления всех слоев. В этом случае коэффициент теплопередачи определяют по формуле

где iпорядковый номер слоя; пчисло слоев.

Рис. 2. Характер изменения температур теплоносителей при прямоточном движе­нии их вдоль поверхности теплообмена


ДВИЖУЩАЯ СИЛА ТЕПЛОВЫХ ПРОЦЕССОВ


Движущей силой тепловых процессов является разность температур сред, при наличии которой тепло распространяется от среды с большей температурой к среде с меньшей температурой. При теплопередаче от одного теплоносителя к другому разность между температурами теплоносителей не сохраняет постоянного значения вдоль поверхности теплообмена, и поэтому в тепловых расчетах, где применяется основное уравнение теплопередачи к конечной поверхности теплообмена, необходимо пользоваться средней разностью температур.

На рис. 2 показан характер изменения температур теплоносителей «при прямоточном движении их вдоль поверхности теплообмена. Один из теплоносителей охлаждается от температуры t’1 до t’’1, другой нагревается от t’2 до t’’2. Количество тепла, переданное в единицу времени от первого теплоносителя ко второму на произвольно выделенном элементе теплообменной поверхности можно определить по основному уравнению теплопередачи:

где Ккоэффициент теплопередачи; t1 и t2температуры теплоносителей по обе стороны элемента dF.

В результате теплообмена на элементе поверхности температура первого теплоносителя понизится на dt1 а второгоповысится на dt2

где G1 и G2расходы первого и второго теплоносителей; c1 и с2теплоемкости первого и второго теплоносителей.

Вычитая равенство (в) из равенства (б), получим:

Подставив значения G1c1 и G2c2 из уравнений (е) и (ж) в равенство (д), имеем:

Подставив значение dQ из уравнения (а) в равенство (г) и выполнив преобразования, имеем

Обозначив через Q общее количество тепла, переданное в единицу времени от первого теплоносителя ко второму на всей теплообменной поверхности F, из уравнения теплового баланса, получим:

Проинтегрировав уравнение при постоянном К, получим

Обозначив наибольшую разность температур между теплоносителями tb= t1-t’2, а наименьшую tм= t’’1-t’’2, подставим соотношение в следующем виде:

Сопоставив уравнения, получим соотношение для определения средней разности температур:

Это соотношение справедливо также и для случая противоточного движения теплоносителей вдоль поверхности теплообмена.

При небольших изменениях температур теплоносителей, когда tм/tb,0,5 среднюю разность температур можно вычислять как среднеарифметическую:

При этом ошибка не превышает 4%.

При перекрестным токе теплоносителей среднюю разность температур можно вычислять по формуле с поправочным коэффициентом t:

Поправочный коэффициент t находят по графикам в зависимости от соотношения температур теплоносителей. В литературе представлены графики для некоторых случаев перекрестного тока теплоносителей. Величины Р и R, указанные на этих графиках, находят по формулам:



НАГРЕВАНИЕ ПРОМЕЖУТОЧНЫМИ ТЕПЛОНОСИТЕЛЯМИ


При нагревании многих материалов для сохранения качества продуктов или обеспечения безопасной работы недопустим даже кратковременный их перегрев. В этих случаях для обогрева применяют промежуточные теплоносители, которые сначала нагреваются топочными газами, а затем передают воспринятое тепло обрабатываемому материалу.

В качестве промежуточных теплоносителей применяют минеральные масла, перегретую воду, высокотемпературные органические теплоносители (ВОТ), расплавленные смеси солей и др.

Нагревание топочными газами через жидкостную баню относится к простейшим способам нагревания промежуточными теплоносителями.

В случае нагревания на масляной бане (до температур 200—250 °С) аппарат снабжают рубашкой, заполненной маслом. Топочные газы омывают рубашку и передают тепло маслу, а масло через стенки аппаратаобрабатываемым материалам. Рубашка соединена трубопроводом с расширительным бачком, в который перетекает часть масла, когда объем его увеличивается при нагревании. В этот же бачок выбрасывается масло при бурном вскипании влаги (почти всегда содержащейся в свежем масле) в случае нагревания масла выше 100— 120 °С.

Нагревание через жидкостные бани не обеспечивает высоких коэффициентов теплопередачи, так как в рубашке в жидком промежуточном теплоносителе возникают только очень слабые конвекционные токи. Для повышения коэффициентов теплопередачи используют установки с циркулирующим жидким промежуточным теплоносителем. Нагревание дымовыми газами с циркулирующим жидким промежуточным теплоносителем. Этот процесс осуществляется на установках с естественной или принудительной циркуляцией теплоносителя.

Принципиальная схема установки с естественной циркуляцией жидкого теплоносителя показана на рис. 3. Жидкий теплоноситель нагревается в змеевике 2

Рис. 3. Принципиальная схема нагревательной установки с естественной циркуляцией жидкого промежуточного теплоноси теля: 1 — печь; 2 — змеевик; 3 обогреваемый аппарат.

печи 1. В результате уменьшения при нагревании плотности теплоносителя он перемещается по трубопроводу вверх к обогреваемому аппарату 3. Теплоноситель «проходит по змеевику, расположенному вокруг этого аппарата, и отдает тепло нагреваемому материалу. Температура теплоносителя при этом снижается, а плотность увеличивается, в результате чего он стекает по трубопроводу вниз. Таким образом осуществляется замкнутая циркуляция теплоносителя.

Тепловая производительность установки с естественной циркуляцией жидкого теплоносителя определяется равенством

где Gскорость циркуляции теплоносителя, кг/ч; степлоемкость теплоносителя, кДж/(кгС)', trтемпература теплоносителя в горячей ветви системы (до обогреваемого аппарата), С; txтемпература теплоносителя в холодной ветви системы (после обогреваемого аппарата), °С.

Скорость циркуляции теплоносителя, может быть найдена из соотношения

где fплощадь сечения трубопровода, wлинейная скорость теплоносителя в трубопроводе, м/с; р плотность теплоносителя, кг/м3

Линейную скорость теплоносителя в трубопроводе можно найти, исходя из законов гидродинамики. Если принять линейный закон изменения плотности теплоносителя в зависимости от высоты рабочей части обогреваемого аппарата ha (м), а также от высоты змеевика в печи hп (м), то напор, определяющий движение теплоносителя в системе, составит '

где H==h+0,5(hа+hп); hвысота, определяющая положение обогреваемого аппарата над печью, м; рх и ргплотности теплоносителя соответственно в холодной и горячей ветви системы, кг/м3

Сопротивление горячей и холодной ветвей циркуляционной системы может быть выражено в виде

где wх и wr линейная скорость теплоносителя соответственно в холодной и горячей ветви, м/с; x и г сумма сопротивлений соответственно холодной и горячей ветви.

При одном и том же сечении трубопровода в холодной и горячей ветвях, согласно закону неразрывности потока, wxpxg== wгpгg и, следовательно,

Подставляя найденное значение wг, получим:

При установившемся процессе

Следовательно,

Из соотношения следует, что тепловая производительность циркуляционных установок возрастает с увеличением разности высот расположения обогреваемого аппарата и печи и с увеличением разности плотностей теплоносителей в холодной и горячей ветвях; с ростом гидравлических сопротивлений системы ее тепловая производительность уменьшается. Скорость теплоносителя в условиях естественной циркуляции невелика: обычно порядка 0,1 м/с.


Случайные файлы

Файл
152833.rtf
29497.rtf
80376.doc
13992.rtf
45929.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.