Взаимодействие электронов с поверхностными акустическими волнами (YTI-OG)

Посмотреть архив целиком

Министерство образования РФ

Владимирский Государственный Университет

Кафедра технологии и проектирования радиоэлектронных средств














Взаимодействие электронов с поверхностными акустическимим волнами.











Выполнил ст.гр. РЭ-100

Кондрашков А.О.

Принял

профессор Устюжанинов В.Н.
















Владимир 2002

  1. Техническое описание эффекта.


УЗ-волна, воздействующая на образец, смещает атомы решетки. Это что приводит к изменению внутрикристаллических полей, что сказывается на распределении и характере движения электронов проводимости. В свою очередь перераспределение электронов и их направленное движение изменяют картину деформаций, а следовательно, и характер распространения акустической волны в кристалле.

При АЭВ происходит обмен энергией и импульсом между УЗ-волной и электронами проводимости. Передача энергии от волны к электронам приводит к электронному поглощению УЗ, а передача импульса - к акустоэлектрическому эффекту, появлению в проводнике постоянного тока в замкнутой цепи (акустоэлектрического тока) или электрического напряжения на концах разомкнутого проводника (акустоэдс) при распространении в нем акустической волны. Акустоэлектрический эффект был предсказан Р. Парментером (1953) и впервые обнаружен Г. Вайнрайхом н X. Дж. Уайтом (1057).

Акустоэлектрический эффект возникает из-за увлечения носителей тока акустической волной, при котором часть импульса, переносимого волной, передается электронам проводимости, в результате чего на них действует средняя сила, направленная в сторону распространения волны. В соответствии с этим акустоэлектрический эффект меняет знак при изменении направления волны на противоположное

Возникновение ЭДС в металлах при воздействии акустической волны, вызывается смещением ионов, что и вызывает увеличение напряженности электрического поля. Таким образом, бегущая акустическая волна в металле вызывает электрическую волну, распространяющуюся с той же скоростью. Возникновение электрического поля приводит к перераспределению свободных электронов: в местах минимума потенциальной энергии плотность электронов уменьшается. В полупроводниках же при сжатии и растяжении, вызванных распространением акустической волны, изменяется расстояние между атомами решетки, и следовательно, изменяется ширина запрещенной зоны. Так в полупроводниках типа Ge, Si с увеличением внешнего сжимающего давления ширина запрещенной зоны возрастает пропорционально давлению. В местах сжатия ширина запрещенной зоны несколько увеличивается, а в областях растяжения – уменьшается. Таким образом, при движении акустической волны возникает модуляция ширины запрещенной зоны с периодом, равным длине акустической волны. В пространстве возникают потенциальные ямы для дырок, в которых концентрация свободных носителей заряда повышается. При движении акустической волны перемещаются и потенциальные ямы, частично увлекая за собой свободные носители.

Наиболее сильное взаимодействие электронов с длинноволновыми фононами имеет место в полупроводниках, у которых нет центра симметрии, обладающих пьезоэлектрическими свойствами – CdSe, InSb, CsAs, CdS и пр.

Возникновение акустоэлектрического эффекта объясняется с позиций квантовой механики, если рассматривать акустическую волну с частотой и волновым вектором k как поток когерентных фононов, каждый из которых несет энергию h и импульс hk. При поглощении фонона электрон получает дополнительную скорость, н результате чего появляется электрический ток.

В область применения акустоэлектрического эффекта входят: измерение интенсивности УЗ-излучения, частотных характеристик УЗ-преобразователей, а также исследование электрических свойств полупроводников: измерения подвижности носителей тока, контроля неоднородности электронных параметров, примесных состояний и др.

В металлах из-за большой концентрации электронов они наряду с ионной решеткой определяют упругие свойства материала. АЭВ возникает как результат действия на электроны и ионы решетки самосогласованного электромагнитного поля, вызванного движением ионов. Для продольного звука это поле имеет электростатический характер; в случае поперечного звука на электроны и ионы действует вихревое электрическое поле. Наряду с силами, определяемыми макроскопическим электромагнитным полем звуковой волны, на электроны действуют также силы, обусловленные локальным изменением электронного закона дисперсии при деформации кристалла. Поскольку со звуковой волной эффективно взаимодействует лишь небольшое число электронов, принадлежащих ферми-поверхности, то такое взаимодействие определяется потенциалом деформации, описывающим локальное возмущение поверхности Ферми. Нередко, особенно при квантово-механическом описании АЭВ в металлах, все взаимодействие описывается в терминах эффективного деформационного потенциала. Электромагнитный механизм взаимодействия помимо металлов проявляется в полуметаллах и полупроводниках с решеткой, содержащей большое число заряженных примесей.

В кристаллах с выраженным эффектом магнитострикции возможно АЭВ, обусловленное переменным магнитным полем, пропорциональным деформации. Оно характерно для ферромагнитных металлов (никель, кобальт) и сплавов, а также других магнитных материалов и зависит от спонтанной намагниченности и напряженности внешнего магнитного поля.

В зависимости от природы кристалла, по которому распространяется акустическая волна, механизм ее взаимодействия с электронами проводимости может быть различным. Рассмотрим вначале металлический звукопровод. Представим его в виде одномерной цепочки положительно заряженных ионов, размещенных в ансамбле свободных электронов проводимости. Возбудим в таком кристалле продольную акустическую волну. Смещение иона U, отстоящего на расстоянии x от начала координат, можно представить как

U=U0cos(t-kx)

Смещения ионов в данный момент времени можно изобразить в виде косинусоиды, изображенной на рис. 6.17 а сплошной линией. Пунктирной кривой показано относительное изменение расстояния между ионами, т.е. деформация

Максимальное отрицательное значение деформации ( деформация сжатия) достигается в точках … Здесь цепочка сжата и расстояние между ионами меньше равновесного.

Максимальное положительное значение достигается в точках

В этих точках цепочка ионов максимально растянута и расстояние между ионами больше равновесного.

Рис. 6.17. Пространственное распределение физических параметров в кристалле при распро-

странении акустических волн.


Таким образом, при движении акустической волны в местах сжатия повышается плотность положительного заряда, а в местах растяжения – плотность заряда уменьшается. Вследствие этого возникает периодическое распределение потенциала V вдоль цепочки с максимумами в областях сжатия. Изменение потенциала вдоль цепочки с максимумами в областях сжатия. Изменение потенциала вдоль цепочки для фиксированного момента времени оказано пунктирной кривой на рис. 6.17 б, а изменение потенциальной энергии W= –eV изображено сплошной линией.

На рис. 6.17 в показано изменение напряженности электрического поля акустической волны . На этом же рисунке приведено пунктирной линией изменение деформации . Видно, что напряженность электрического поля максимальна в областях, где деформация минимальна и наоборот, минимальна в местах где деформация имеет максимум. Горизонтальными стрелками указаны направления электрического поля .

Таким образом, бегущая акустическая волна в металле вызывает электрическую волну, распространяющуюся с той же скоростью. Возникновение электрического поля приводит к перераспределению свободных электронов: в местах минимума потенциальной энергии плотность электронов уменьшается.

Поскольку при движении акустической волны возникшие потенциальные ямы движутся вдоль цепочки со скоростью звука 3, то они увлекают за собой электроны, находящиеся в этих ямах.


2. Основные параметры эффекта.


Усиление ультразвука возможно, если только оно превосходит поглощение, обусловленное решеткой. На опыте наблюдалось усиление ультразвука в пьезополупроводниках (CdS, CdSe, Те, GaAs, InSb и др.) в диапазоне частот 10-104 МГц при температуpax от гелиевых до комнатных. Значения экспериментально наблюдаемых инкрементов составляют 20-80 дБ/см. При низких температурах наблюдалось также усиление ультразвука в неполярных полупроводниках (Ge) и полуметаллах (Bi).

Опыты приводились на образцах 1 и 2 кристаллов CdS. Образцы имели форму прямоугольных параллелепипедов со следующими разме­рами ll вдоль осей x, у, z (z — гексагональная ось): lx = 52,0, lv = 11.52, lz = 11,55 мм (образец 1); lx = 28,4. lv = 12,11, lz — 12,15 мм (образец 2). Образцы были желтого цвета, прозрачные.

Их электропроводность а менялась в зависимости от освещения в пределах

= 10-10–10-2 Ом-1 ·см-1.

Эффективная дрейфовая подвижность = 140 см-с-1-1.

Рэлеевские волны распространялись в плоскостях ху кристаллов, а поперечные — вдоль осей у с направлением смещений частиц в волне параллельно осям z. Поверхности ху об­разцов были хорошо обработаны.

Коэффициенты усиления (затухания) измерялись в импульсном режиме на частоте ~ 30 МГц при длитель­ности импульсов 2—3 мкс для рэлеевских волн и 1—2 мкс для поперечных волн. На рис. 3.17 приведена схема эксперимента. Дрейфовые электроды, служащие для со­здания в поверхностном слое кристалла постоянного элект­рического поля Е0, наносились на плоскость ху путем на­пыления индия и представляли собой две параллельные полоски шириной 1,5 мм, находящиеся на расстоянии 7 мм друг от друга. Кристалл освещался ртутной лампой ДРШ-500, причем засвечивалась только узкая полоска (поверхностный слой 0.5 мм) между электродами. Осталь­ная часть кристалла была закрыта непрозрачным экра­ном. Такое освещение позволяло локализовать электроны проводимости кристалла (созданные светом) в поверхно­стном слое между дрейфовыми электродами и этим до­стигнуть постоянства напряженности Е0 по координате х (в пределах 10%). Для развязки импульсов дрейфового поля п импульсов с частотой заполнения 30 МГц. подавае­мых на излучатель через коаксиальный кабель, использо­вались индуктивность L и емкости С.


Случайные файлы

Файл
174468.rtf
essay.doc
169982.rtf
20903-1.rtf
97034.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.