Бозе-Эйнштейновский конденсат (ref-14895)

Посмотреть архив целиком

Квантовая механика, представляющая собой один из важней­ших разделов современной теоретической физики, была создана сравнительно недавно — в 20-х годах нашего столетия.

Ее основной задачей является изучение поведения микро­частиц, например электронов в атоме, молекуле, твердом теле, электромагнитных полях и т. д.

В истории развития каждого раздела теоретической физики следует различать несколько этапов: во-первых, накопление экс­периментальных фактов, которые нельзя было объяснить с по­мощью существующих теорий, во-вторых, открытие отдельных полуэмпирических законов и создание предварительных гипотез и теорий и, в-третьих, создание общих теорий, позволяющих с единой точки зрения понять совокупность многих явлений.

По мере того как с помощью теории Максвелла—Лоренца объяснялось все большее число явлений микромира (проблема излучения, распространения света, дисперсия света в средах. движение электронов в электрическом и магнитном полях и т.д.). постепенно стали накапливаться и такие экспериментальные факты, которые не укладывались в рамки классических представлений.

При этом для построения теории равновесного электромагнит­ного излучения, фотоэффекта и эффекта Комптона необходимо было ввести предположение о том, что свет наряду с волновыми должен обладать также и корпускулярными свойствами. Это было учтено в теории квантов Планка—Эйнштейна. Дискретная структура света нашла свое описание с помощью введения по­стоянной Планка h=6,62*IO'27 эрг-сек. Теория квантов была с успехом также использована при построении первой квантовой теории атома—теории Бора, которая опиралась на планетарную модель атома, следовавшую из опытов Резерфорда по рассеянию альфа-частиц различными веществами. С другой стороны, целый ряд экспериментальных данных, та­ких, как дифракция, интерференция пучка электронов, говорили нам о том, что электроны наряду с корпускулярными проявляют также и волновые свойства

Первым обобщающим результатом тщательного анализа всех предварительных теорий, а также экспериментальных дан­ных, подтверждающих как квантовую природу света, так и вол­новые свойства электронов, явилось волновое уравнение Шредингера (1926), позволившее вскрыть законы движения электронов и других атомных частиц и построить после открытия вто­ричного квантования уравнений Максвелла—Лоренца сравни­тельно последовательную теорию излучения с учетом квантовой природы света. С появлением уравнения Шредингера ученые, исследовавшие атом, получили в свои руки такое же мощное оружие, какое в свое время было дано астрономам после появ­ления основных законов механики Ньютона, включая закон все­мирного тяготения

Поэтому не удивительно, что с появлением уравнения Шредингера многие факты, связанные с движением электронов внутри атома, нашли свое теоретическое обоснование.

Однако, как оказалось в дальнейшем, теория Шредингера описывала далеко не все свойства атомов; с ее помощью нельзя было, в частности, правильно объяснить взаимодействие атома с магнитным полем ,а тaкжe построить теорию сложных атомов. Это было связано главным образом с тем обстоятельством, что в теории Шредингера не учитывались релятивистские и спиновые свойства элек­трона.

Дальнейшим развитием теории Шреденгера явилась реляти­вистская теория Дирака. Уравнение Дирака позволило описать как релятивистские, так и спиновые эффекты электронов При этом оказалось, что если учет релятивистских эффектов в атомах с одним электроном приводит к сравнительно небольшим коли­чественным поправкам, то при изучении строения атомов с не­сколькими электронами учет спиновых эффектов имеет решаю­щее значение. Только после того как были приняты во внимание спиновые свойства электронов, удалось объяснить правило за­полнения электронных оболочек в атоме и дать периодическому закону Менделеева строгое обоснование.

С появлением уравнения Дирака принципиальные вопросы, связанные со строением электронной оболочки атома, можно было считать в основном разрешенными, хотя углубление наших знаний в развитии отдельных деталей должно было продол­жаться. В связи с этим следует заметить, что в настоящее время подробно изучается влияние так называемого электромагнитного и электронно-позитронного вакуумов, а также влияние магнитных моментов ядер и размеров ядер на энергетические уровни атомов.

Одной из характерных особенностей первого этапа теории элементарных частиц, получившей название квантовой теории поля, является описание взаимной превращаемости элемен­тарных частиц. В частности, по теории Дирака было предска­зано возможное превращение гамма-квантов в пару электрон-позитрон и обратно, что затем было подтверждено экспери­ментально

Таким образом, если в классической теории между светом и электронами было два различия а) свет—волны, электроны— частицы, б) свет может появляться и поглощаться, число же электронов должно оставаться неизменным, то в квантовой ме­ханике со свойственным ей корпускулярно-волновым дуализмом было стерто первое различие между светом и электронами. Од­нако в ней, так же как и в теории Лоренца, число электронов должно было оставаться неизменным .Только после появления квантовой теории поля, описывающей взаимную превращаемость элементарных частиц, было фактически стерто и второе раз­личие

Поскольку одной из основных задач теоретической физики является изучение реального мира и прежде всего простейших фору его движения, определяющих также и более сложные яв­ления, то естественно, что все эти вопросы всегда связаны с филосовскими вопросами и, в частности, с вопросом позна­ваемости микромира, поэтому не удивительно, что многие крупные физики, сделав­шие важнейшие открытия в области физики, пытались вместе с тем интерпретировать эти открытия с той или иной философской точки зрения. Благодаря таким взглядам был открыт эффект Бозе-Эйнштейновской конденсации.

К 1920 физики были уже довольно хорошо знакомы с двойственной природой света: результаты одних экспериментов со светом можно было объяснить, предполагая, что свет представляет собой волны, а в других он вел себя подобно потоку частиц. Поскольку казалось очевидным, что ничто не может быть в одно и тоже время и волной, и частицей, ситуация оставалась непонятной, вызывая горячие споры в среде специалистов. В 1923 французский физик Л.де Бройль в опубликованных им заметках высказал предположение, что столь парадоксальное поведение, может быть, не является спецификой света, но и вещество тоже может в одних случаях вести себя подобно частицам, а в других подобно волнам. Исходя из теории относительности, де Бройль показал, что если импульс частицы равен p, то «ассоциированная» с этой частицей волна должна иметь длину волны = h/p. Это соотношение аналогично впервые полученному Планком и Эйнштейном соотношению E = h между энергией светового кванта Е и частотой соответствующей волны. Де Бройль показал также, что эту гипотезу можно легко проверить в экспериментах, аналогичных опыту, демонстрирующему волновую природу света, и настойчиво призывал к проведению таких опытов. Заметки де Бройля привлекли внимание Эйнштейна, и к 1927 К.Дэвиссон и Л.Джермер в Соединенных Штатах, а также Дж.Томсон в Англии подтвердили для электронов не только основную идею де Бройля, но и его формулу для длины волны. В 1926 работавший тогда в Цюрихе австрийский физик Э.Шрёдингер, прослышав о работе де Бройля и предварительных результатах экспериментов, подтверждавших ее, опубликовал четыре статьи, в которых представил новую теорию, явившуюся прочным математическим обоснованием этих идей.

Такая ситуация имеет свой аналог в истории оптики. Одной уверенности в том, что свет есть волна определенной длины, недостаточно для детального описания поведения света. Необходимо еще написать и решить выведенные Дж.Максвеллом дифференциальные уравнения, подробно описывающие процессы взаимодействия света с веществом и распространение света в пространстве в виде электромагнитного поля. Шрёдингер написал дифференциальное уравнение для материальных волн де Бройля, аналогичное уравнениям Максвелла для света. Уравнение Шрёдингера для одной частицы имеет вид

=d /dx

где m масса частицы, Е ее полная энергия, V(x) потенциальная энергия, а величина, описывающая электронную волну. В ряде работ Шрёдингер показал, как можно использовать его уравнение для вычисления энергетических уровней атома водорода. Он установил также, что существуют простые и эффективные способы приближенного решения задач, не поддающихся точному решению, и что его теория волн материи в математическом отношении полностью эквивалентна алгебраической теории наблюдаемых величин Гейзенберга и во всех случаях приводит к тем же результатам. П.Дирак из Кембриджского университета показал, что теории Гейзенберга и Шрёдингера представляют собой лишь две из множества возможных форм теории. Вскоре Дирак добился неожиданно крупного успеха, продемонстрировав, каким образом квантовая механика обобщается на область очень больших скоростей, т.е. приобретает вид, удовлетворяющий требованиям теории относительности. Постепенно стало ясно, что существует несколько релятивистских волновых уравнений, каждое из которых в случае малых скоростей можно аппрокcимировать уравнением Шрёдингера, и что эти уравнения описывают частицы совершенно разных типов. Например, частицы могут иметь разный «спин»; это предусматривается теорией Дирака. Кроме того, согласно релятивистской теории, каждой из частиц должна соответствовать античастица с противоположным знаком электрического заряда. В то время, когда вышла работа Дирака, были известны только три элементарные частицы: фотон, электрон и протон. В 1932 была открыта античастица электрона позитрон. На протяжении нескольких последующих десятилетий было обнаружено много других античастиц, большинство из которых, как оказалось, удовлетворяли уравнению Дирака или его обобщениям. Созданная в 19251928 усилиями выдающихся физиков квантовая механика не претерпела с тех пор в своих основах каких-либо существенных изменений.


Случайные файлы

Файл
16249-1.rtf
58717.rtf
20487.rtf
47608.rtf
125953.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.