История развития дирижаблей (148195)

Посмотреть архив целиком

ГОУ СПО

Пермский авиационный техникум им. А.Д. Швецова













История развития дирижаблей




Выполнил студент гр. АД-09-1

Ермаков Алексей










Пермь 2011


Устройство и принципы действия


Дирижабль (от фр. dirigeable — управляемый) - летательный аппарат легче воздуха, аэростат с двигателем, благодаря которому дирижабль может двигаться независимо от направления воздушных потоков.

Двигатели. Самые первые дирижабли приводились в движение паровым двигателем или мускульной силой, в 80-х годах XIX века были применены электродвигатели, c 1890-х стали широко применяться двигатели внутреннего сгорания. На протяжении XX века дирижабли оснащались практически исключительно ДВС — авиационными и, значительно реже, дизельными (на некоторых цеппелинах и некоторых современных дирижаблях). В качестве движителей используются воздушные винты. Стоит также отметить крайне редкие случаи применения турбовинтовых двигателей — в дирижабле GZ-22 «The Spirit of Akron» и советском проекте «Д-1». В основном подобные системы, равно как и реактивные, остаются лишь на бумаге. В теории, в зависимости от конструкции, часть энергии подобного двигателя может быть использована для создания реактивной тяги.









Полёт. Набор высоты и снижение производят, наклоняя дирижабль рулями высоты — двигатели тогда тянут его вверх или вниз. Сбрасывание балласта и выпуск газа в полёте производят редко: например, выпускают газ при выработке топлива. Из-за этой особенности стрелки на кайзеровских «цеппелинах» должны были получить разрешение командира на стрельбу из станковых пулемётов, чтобы ненароком не воспламенить выпущенный водород.













Причаливание. Часто думают, что дирижабль 1930‑х гг. мог приземляться вертикально, как вертолёт — в действительности же это осуществимо только при полном отсутствии ветра. В реальных условиях для посадки дирижабля требуется, чтобы находящиеся на земле люди подобрали сброшенные с разных точек дирижабля канаты и привязали их к подходящим наземным объектам; затем дирижабль можно подтянуть к земле. Наиболее же удобный и безопасный способ посадки (особенно для больших дирижаблей) — причаливание к специальным мачтам.






С вершины причальной мачты сбрасывали канат, который прокладывали по земле по ветру. Дирижабль подходил к мачте с подветренной стороны, и с его носа также сбрасывали канат. Люди на земле связывали эти два каната, и затем лебёдкой дирижабль подтягивали к мачте — его нос фиксировался в стыковочном гнезде. Причаленный дирижабль может свободно вращаться вокруг мачты, как флюгер. Стыковочный узел мог двигаться по мачте вверх-вниз — это позволяло опустить дирижабль ближе к земле для погрузки/разгрузки и посадки/высадки пассажиров.

Чтобы завести дирижабль в ангар при сильном ветре, требовались усилия до 200 человек.


Типы дирижаблей










По конструкции. По конструкции дирижабли подразделяются на три основных типа: мягкий, полужёсткий и жёсткий.

В мягкой и полужёсткой системах матерчатый корпус служит также оболочкой для газа. Дирижабли полужёсткого типа отличаются наличием в нижней (как правило) части оболочки металлической (в большинстве случаев) фермы, препятствующей деформации оболочки. Примером полужесткого дирижабля является дирижабль «Италия». Килевая ферма состояла из стальных шпангоутов треугольной формы, соединённых стальными же продольными стрингерами. Спереди к килевой ферме было прикреплено носовое усиление, представлявшее собой стальные трубчатые фермы, скреплённые поперечными кольцами, сзади — кормовое развитие. Также к килевой ферме были подвешены гондолы: в одной располагались рубка управления и пассажирские помещения, в трёхмотогондолах — двигатели. В дирижаблях мягкой и полужёсткой систем неизменяемость внешней формы достигается избыточным давлением несущего газа, постоянно поддерживаемым баллонетами — мягкими ёмкостями, расположенными внутри оболочки, в которые нагнетается воздух.

В жёстких дирижаблях неизменяемость внешней формы обеспечивалась металлическим каркасом, обтянутым тканью, а газ находился внутри жёсткого каркаса в мешках (баллонах) из газонепроницаемой материи. Жёсткие дирижабли имели ряд недостатков, вытекавших из особенностей их конструкции: например, спуск на неподготовленную площадку без помощи людей на земле был чрезвычайно труден, и стоянка жёсткого дирижабля на подобной площадке, как правило, заканчивалась аварией, так как хрупкий каркас при более-менее сильном ветре неминуемо разрушался, ремонт каркаса и замена его отдельных частей требовали значительного времени и опытного персонала, поэтому стоимость жёстких дирижаблей была очень высока.

Монококовые бескаркасные дирижабли — конструкции дирижаблей с металлической обшивкой — возникли в 1890-е годы с целью уменьшить сопротивление воздуха. В 1920-е годы началось применения обшивки из алюминиевых сплавов. За всю историю дирижаблестроения было построено только четыре таких дирижабля, и из них только один —экспериментальный американский ZMC-2 — успешно (хотя и нечасто) летал в течение нескольких лет.

По принципу получения подъёмной силы. Гибридные дирижабли тяжелее воздуха и являются комбинацией аэростата и аэродинамического летательного средства. Предположительно они могут иметь лучшие аэродинамические характеристики, чем дирижабли как таковые. Дирижабль германского производства Zeppelin NT часто ошибочно называют гибридным дирижаблем, поскольку он немного тяжелее воздуха. Однако лишь летательные средства, берущие как минимум 40 % подъёмной силы от тяги двигателей, могут считаться гибридными.

По форме. По форме дирижабли делятся на:

  • сигарообразные с уменьшенным лобовым сопротивлением (таких большинство)

  • все прочие дирижабли, в задачи которых входит зависание над землей или медленный полёт:

    • эллипсоидные — в виде эллипсоида (с уменьшенным сопротивлением боковому ветру);

    • дисковые — в виде диска;

    • линзообразные — в виде двояковыпуклой линзы;

    • тороидальные — в виде тора, предназначенные для использования в качестве воздушного крана;

    • V-образные;

    • «вертикальные дирижабли», напоминающие по форме летающие небоскребы [7] — предназначены для полётов над городами, где улицы создают условия для сильного ветра, дующего вдоль зданий, что приводит к турбулентным течениям воздуха.

По большей части дирижабли необычных форм существуют только в виде проектов. Кроме того, существуют варианты обычных монгольфьеров с мотогондолой, позаимствованной от парамотора.

По заполняющему газу. По типу заполнителя дирижабли делятся на:

  • Использующие газ с плотностью меньшей, чем плотность окружающего воздуха при равных температуре и давлении, что согласно закону Архимеда означает, что дирижабль будет «плавать» в воздухе. В наши дни это, как правило, инертный гелий, несмотря на его сравнительную дороговизну; в прошлом применялся огнеопасный водород.

  • Тепловые дирижабли, использующие нагретый воздух.

  • Комбинированные варианты (так называемые аэростаты типа розьер). Идея использования горячего воздуха в таком случае состоит в регулировании плавучести дирижабля без выпуска несущего газа в атмосферу — достаточно перестать подогревать горячий воздух после облегчения дирижабля, чтобы аппарат потяжелел. Примерами этих достаточно редких конструкций могут служить «Термоплан» и исследовательский дирижабль «Canopy-Glider».

Внутренность дирижабля также может быть использована для перевозки газообразного топлива. Например, одним из принципиальных отличий дирижабля Граф Цеппелин от других цеппелинов было использование для работы двигателей блау-газа, плотность которого была близка к плотности воздуха, а теплотворная способность значительно выше, чем у бензина. Это позволяло существенно увеличить дальность полёта и избавляло от необходимости затяжелять дирижабль по мере выработки топлива (Расход горючего для моторов «Майбах» равнялся: бензина — 210 г и масла — 8 г на 1 л. с./ч, то есть мотор расходовал около 115 кг бензина в час.)

Затяжеление дирижаблей осуществлялось путём выпуска части несущего газа, что создавало ряд экономических и пилотажных неудобств; кроме того, применение блау-газа вело к меньшей, чем в случае установки многочисленных тяжёлых баков с бензином, нагрузке на каркас. Блау-газ находился в 12 отсеках в нижней трети каркаса дирижабля, объём которых мог быть доведён до 30 000 м³ (для водорода в таком случае оставалось 105 000 м³-30 000 м³ = 75 000 м³). Бензин брался на борт в качестве дополнительного топлива.

Теоретически также существует возможность существования вакуумного дирижабля, однако на практике это неосуществимо, а все проекты такого аппарата остаются умозрительными.


Преимущества и недостатки


Аэродинамические летательные средства должны тратить около двух третей тяги двигателей для поддержания своего веса в воздухе. Дирижабль же может находиться в воздухе практически «бесплатно» за счёт подъёмной силы газа. Однако эта подъёмная сила составляет для водорода и гелия лишь около 1 кг на кубометр, поэтому дирижабли по размерам значительно превышают самолёты и вертолёты.


Случайные файлы

Файл
41533.rtf
77958.doc
112109.rtf
30239-1.rtf
112473.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.