Паровые турбины и судовые дизеля (146689)

Посмотреть архив целиком

Чтобы попасть в машинное отделение судна, приходится долго спускаться вниз по многочисленным трапам и потом некоторое время не можешь отделаться от ощущения, что находишься в какой-то подводной лаборатории. Сверху пробивается дневной свет, бросая блики на деловито работающие шеренги могучих стальных машин. Здесь их немало, но первую скрипку в этом отлично сыгранном ансамбле играет главный двигатель. От него в корму по специальному туннелю проложен быстро вращающийся вал. На свободный конец вала насажен гребной винт. Главный двигатель, вращая гребной вал, заставляет тем самым вращаться винт, который и сообщает судну поступательное движение.

Кроме главного двигателя—множество насосов: одни из них подают масло, другие—жидкое топливо, третьи подводят к главному двигателю охлаждающую воду и т. д. В машинном отделении есть также сепараторы, которые очищают топливо и масло от примесей, компрессоры, подающие сжатый воздух для пуска двигателей. Довольно много места занимают так называемые вспомогательные двигатели; они вырабатывают электрическую энергию для освещения, отопления, для работы разных устройств и механизмов. Иногда здесь устанавливают довольно внушительный паровой котел, хотя для него обычно стараются выделить отдельное помещение. Паровой котел вырабатывает пар для отопления, для подогрева жидких грузов (на танкерах), для технологических нужд (на плавучих рыбозаводах) и т. д.

В машинном отделении обычно приходится располагать так много различного оборудования, что нередко здесь устраивают платформы, чтобы разместить на них часть машин и механизмов. Тут же, на платформе, предусматривается мастерская и машинная кладовая.

Для обеспечения естественной вентиляции и освещения над машинным отделением устраивается шахта, выходящая на верхнюю открытую палубу и закрытая световым, т. е. прозрачным, застекленным люком. Вот откуда в машинное отделение проникает дневной свет!


Массивный шаг в развитии пароатмосферных машин был сделан Томасом Ньюкоменом (Tomas Newcomen, 1663-1729). Двигатель Ньюкомена работал на насыщенном паре, получаемым в к

отле при давлении, близком к атмосферному, а рабочий ход выполнялся за счет создания вакуума в рабочем цилиндре после его резкого охлаждения. Основой предпосылкой для создания пароатмосферного двигателя стала необходимость решения задачи дренажа шахт глубокого залегания.

О

Насос Ньюкомена, Шотландия, 1880 г. В 1920 г. двигатель куплен Генри Фордом и в 1929 перевезен в Америку, где сегодня находится в музее техники Генри Форда в Деарборне (Dearborn), штат Мичиган. Мощность двигателя ок. 15 л. с.

дин из первых шахтных водоотливных насосов Ньюкомена с цилиндром диаметром в 8 дюймов (20,32 см) работал по приципу водяного насоса Отто фон Герике и поднимал воду на высоту в 162 фута (49,4 м), при этом суммарный столб поднимаемой воды был равен 3535 фунтам (1,6 т). Полезная работа (ход) насоса осуществлялась цилиндром диаметром 2 фута (61 см) с площадью в 452 кв. дюйма (0,292 кв.м). Избыточное давление пара в котле поддерживалось равным 10 фунтов на кв. дюйм (0,7 кг/кв.см), температура воды, используемой для конденсации пара и уплотнения зазоров поршня, - около 150 °F (65 °С).

Указанные параметры цилиндра позволяли создать избыточное усилие на поршне в 1324 фунтов (600 кгс или 5893 Н), половина из которого расходовалась на компенсацию тяжести противовеса, а 662 фунтов (300 кгс) обеспечивали работу механизма насоса. Двигатель работал со скоростью 15 циклов в минуту, при этом средняя скорость движения поршня достигала 75 футов в минуту (0,381 м/c), а полезная мощность была равна 265 125 фунтам на фут в минуту (6 кВт). Учитывая, что мощность в одну лошадиную силу эквивалентна 33 000 футов на фунт в минуту (745,7 Вт), двигатель Ньюкомена развивал мощность около 8 л.с.

Сравнительный анализ эффективности насосов Ньюкомена и Савери показал, что для вакуумного насоса Савери способного засосать воду не более чем на 32 фута (10 м), подъем столба воды весом в 1,6 т. на высоту в 130 ft (39,6 м) возможен только при давлении в котле не менее 60 фунтов на кв. дюйм (4,2 кг/кв.см), что было практически недостижимо для котлов начала XVIII в.



ПРИНЦИП РАБОТЫ ДВИГАТЕЛЯ НЬЮКОМЕНА.


[ Cхема двигателя Ньюкомена ]


Реконструкция двигателя Ньюкомена

После заполнения цилиндра паром его подвод перекрывался и открывался клапан, обеспечивающий доступ воды из водяного бака в цилиндр, после чего пар, заполняющий рабочий цилиндр, конденсировался и под действием разряжения поршень двигался вниз. Затем кран подвода воды в цилиндр закрывался, вода и конденсат сливались и открывался подвод пара в цилиндр, при этом коромысло двигателя, под действием веса столба воды в водоподъемнике опускалось вниз, поднимая при этом рабочий поршень вверх, и цикл повторялся вновь. Противовесы служили для компенсации массы деталей, участвующих в работе подъемника.

Первые двигатели Ньюкомена выполняли 6 - 8 ходов в минуту, позже скорость движения была доведена до 10 - 12 ходов в минуту. Основной недостаток двигателей Нюкомена был связан с их чрезвычайной громоздкостью и прерывистым характером движения насоса.

Способ преодоления последнего недостатка был найден Иваном Ивановичем Ползуновым (1728-66), разработавшим в 1763 г.


Схема двигателя Ползунова

P - паровой котел,
Т - водяной охладитель,
А, В - цилиндры,
а ,в - поршни,
f - кулиса,
m - клапан,
d1, d2 - штанги,
l1, l2 - кулачки.

двухцилиндровую пароатмосферную машину.

В машине И. Ползунова впрыск воды в цилиндр для создания вакуума осуществлялся поочередно с использованием специального кулисного механизма. На приведенном справа рисунке показана схема двигателя И. Ползунова.

Пробный пуск машины И. Ползунова состоялся в 1766 г., через неделю после смерти ее изобретателя, но из-за износа кожаного уплотнения цилиндров и течи в котле машина проработала всего 43 дня и в 1780 г. была демонтирована и уничтожена.

Первый насос Ньюкомена был установлен в 1712 г. в графстве Стаффордшир (Staffordshire), а в общем несколько сотен паровых насосов Ньюкомена и Савери использовались в Европе до появления двигателя Дж.Уатта.

Дальнейшее развитие пароатмосферных двигателей уткнулось в проблему габаритов, т.к. при использовании только потенциала атмосферного давления увеличение мощности двигателя достигалось за счет увеличения габаритов рабочего цилиндра, длина которых на последних двигателех Ньюкомена достигала уже 10 футов (3 м).

Доктор Робисон (Dr. Robison), автор "Философии механики (Mеchanical Philosophy)", одной из немногих работ, посвященных истории развития машиностроения, следующим образом описывает двигатели Ньюкомена, проработавшие в Шотландии до 1790 г. Диаметр цилиндра водоотливных насосов - 40-44" (100-112 см), диаметр рабочего цилиндра - 60" (152 см), ход поршня - 6 ft (183 см). Избыточное давление в котле - 2.77 ft/кв. дюйм (1,95 кг/кв.см), в цилиндре - 2.63 ft/кв. дюйм (1,85 кг/кв.см). Скорость работы насоса - 15-18 циклов в минуту, развиваемая мощность - 20 л.с. (14,7 кВт).


Паровой двигатель Джеймса Уатта

Следующий шаг в развитии двигателестроения связан с открытием в 1761 г. понятия скрытой теплоты, названной в последствии энтальпией, и разработкой методов ее расчета. Исследования проводил Джозеф Блэк, (Joseph Black, 1728-1799), профессор университета Глазго, которому помогал выпускник университета, "гражданский инженер" Джеймс Уатт (James Watt, 1736-1819).

Фундаментальное для дальнейшего развития техники явление было открыто в результате исследования причин неизменности температуры смеси воды и тающего льда в при ее нагревании.

Осознание возможности выполнения полезной работы путем использования скрытой энергии пара и установление ее численной взааимосвязи с температурой и давлением рабочей среды стало возможным только после завершения формирования кинетической теории газов и понимания сущности энергии, на что потребовалось почти 60 лет.

Хронология формирования теоретической базы термодинамики

1709: Изобретение спиртового термометра, Габриэль Фарангейт (Gabriel Fahrenheit);

1714: Закон сохранения энергии (первый закон термодинамики), Готфрид Лейбниц (Gottfreid Leibniz);

1714: Изобретение ртутного термометра, Габриэль Фарангейт (Gabriel Fahrenheit);

1724: Открытие явления переохлаждения воды, Габриэль Фарангейт (Gabriel Fahrenheit);

1731: Водо-спиртовой термометр, Рене Реомюр (Rene Reaumur);

1738: Кинетическая теория газов, Данил Бернулли (Daniel Bernoulli);

1738: Гидродинамика, Данил Бернулли (Daniel Bernoulli);

1742: Обратная стоградусная температурная шкала, Андреас Цельсий (Anders Celsius);

1743: Прямая температурная шкала Цельсия, Жан Кристин (Jean Christin);

1743: Введение понятия энергии в Ньютоновскую механику, Жан де Аламбер (Jean d'Alembert);

1744: Введение понятия энергии в гидродинамику, Жан де Аламбер (Jean d'Alembert);

1744: Открытие взаимосвязи температуры со скоростью движения молекул, Михал Ломоносов (Mikhail Lomonosov);

1748: Закон сохранения массы и энергии, Михал Ломоносов (Mikhail Lomonosov);


Случайные файлы

Файл
124259.rtf
ref-20831.doc
30038-1.rtf
74335.rtf
100274.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.