Теоретическая механика лекции из МАИ (ворд) (tm16_18)

Посмотреть архив целиком

18


http//:www.svkspb.nm.ru

Динамика

Динамика – раздел механики, в котором изучаются законы движения материальных тел под действием сил. Осн.законы механики (зак-ны Галилея-Нютона): закон инерции (1-ый закон): материальная точка сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока действие других тел не изменит это состояние; основной закон динамики ( 2-ой закон (Ньютона)): ускорение матер.точки пропорционально приложенной к ней силе и имеет одинаковое с ней направление ; закон равенства действия и противодействия (3-й закон (Ньютона)): всякому действию соответствует равное и противоположно направленное противодействие; закон независимости сил: несколько одновременно действующих на матер.точку сил сообщают точке такое ускорение, какое сообщила бы ей одна сила, равная их геометрической сумме. В классической механике масса движущегося тела принимается равной массе покоящегося тела, – мера инертности тела и его гравитационных свойств. Масса = весу тела, деленному на ускорение свободного падения.

m=G/g, g9,81м/с2. g зависит от географической широты места и высоты над уровнем моря – не постоянная величина. Сила – 1Н (Ньютон) = 1кгм/с2. Система отсчета, в которой проявляются 1-ый и 2-ой законы, назыв. инерциальной системой отсчета. Дифференциальные уравнения движения материальной точки: , в проекции на декартовы оси коорд.: , на оси естественного трехгранника: ma=Fi; man=Fin; mab=Fib (ab=0 – проекция ускорения на бинормаль), т.е. ( – радиус кривизны траектории в текущей точке). Вслучае плоского движения точки в полярных координатах: . Две основные задачи динамики: первая задача динамики – зная закон движения точки, определить действующую на нее силу; вторая задача динамики (основная) – зная действующие на точку силы, определить закон движения точки. – дифференциальное ур-ие прямолинейного движения точки. Дважды интегрируя его, находим общее решение x=f(t,C1,C2).

Постоянные интегрирования C1,C2 ищут из начальных условий: t=0, x=x0, =Vx=V0, x=f(t,x0,V0) – частное решение – закон движения точки.

Колебательное движение материальной точки. Восстанавливающая сила (сила упругости) Fx= – cx, сила стремится вернуть точку в равновесное положение, "с" – коэффициент жесткости пружины = силе упругости при деформации, равной единице [Н/м]. Свободные колебания ; обозначив c/m=k2, получаем – линейное однородное диффер-ное уравнение второго порядка, характеристическое уравнение: z2 + k2= 0, его корни мнимые, общее решение дифф-ного уравнения будет x= C1coskt + C2sinkt, C1,C2постоянные интегрирования. Для их определения находим уравнение скоростей: = – kC1sinkt + kC2coskt, подставляем начальные условия в уравнения для х и , откуда С1= х0, С2=/k, т.е. x= х0coskt + (/k)sinkt.

Можно обозначить С1sin, C2=Acos x=Asin(kt+) – уравнение гармонических колебаний. А=–амплитуда, tg=kx0/, начальная фаза свободных колебаний; – циклическая частота (угловая, собственная) колебаний; период: Т=2/k=2, k и Т не зависят от начальных условий – изохронность колебаний; амплитуда и начальная фаза зависят о начальных условий. Под действием постоянной силы Р происходит смещение центра колебаний в сторону действия силы Р на величину статического отклонения ст=Р/с. Если Р – сила тяжести, то Т=2.

Затухающие колебания при действии Rx= – b сила сопротивления, пропорциональная скорости (вязкое трение). , обозначив b/m=2n, получаем:

, характеристическое уравнение: z2 + 2nz + k2= 0, его корни:

z1,2=. а) При n корни мнимые общее решение дифф.ур-ия имеет вид: , обозначив С1sin, C2=Acos x=Ae-ntsin(kt+). Множитель e-nt показывает, что колебания затухающие. График заключен между двумя симметричными относительно оси t кривыми x=Ae-nt. Из начальных условий: , ; частота затухающих колебаний: k*=; период: , период затухающих колебаний больше периода свободных колебаний (при небольших сопротивлениях Т*Т). Амплитуды колебаний уменьшаются: – декремент колебаний; –nT*/2 логарифмический декремент; "n" – коэффициент затухания.

Б) Апериодическое движение точки при n k или b 2. При n > k корни характеристич-ого ур-я вещественны, общее решение: , обозначая С1=(В12)/2, С2=(В12)/2, (ch, sh – гиперболические косинус и синус), если ввести В1= Аsh, В2= Аch, то – это уравнение не колебательного движения (апериодического), т.к. гиперболический синус не является периодической функцией. При n = k корни характеристич. ур-я вещественны, равны и отрицательны: z1=z2= – n, общее решение: , или , движение также апериодическое.


Вынужденные колебания кроме восстанавливающей силы действует переменная возмущающая сила, обычно, по гармоническому закону: Q = Hsin(pt+), р – частота возмущающей силы, начальная фаза. , h=Н/m, – дифференциальное уравнение вынужденных колебаний (неоднородное линейное дифф-ное ур-ие). Его общее решение = сумме общего решения однородного уравнения и частного решения данного уравнения:

х = х***. х*= C1coskt + C2sinkt, х**= Asin(рt+) – частное решение ищется в виде подобном правой части уравнения. Подставляя решение в уравнение, находим , х = C1coskt + C2sinkt+sin(рt+). Величина статического отклонения: Аст= Н/с, – коэфф-нт динамичности, во скослько раз амплитуда колебаний превосходит статическое отклонение. При p=k =явление резонанса (частота возмущающей силы равна частоте собственных колебаний, при этом амплитуда неограниченно возрастает). При p/k1 наступает явление, называемое биениями: . Обозначая , получаем x=A(t)cos(pt+) – происходит наложение дополнительных колебаний, вызванных возмущающей силой, на собственно вынужденные колебанияколебания частоты р, амплитуда которых является периодической функцией.

Явление резонанса возникает при совпадаении частот вынужденных и свободных кол-ний точки p=k. Диф-ное ур-ние: . Частное решение:

х**= Вtcos(kt+), B=–h/(2k), т.е. общее решение диф-ного ур-ния: х = C1coskt + C2sinkt – –h/(2k)tcos(kt+). Ур-ние показывает, что амплитуда вынужденных колебаний при резонансе возрастает пропорционально времени. Период

Т=2/k, фаза вынужденных колебаний отстает от фазы возмущающей силы на /2.

Вынужденные колебания при наличии вязкого трения: +Hsin(pt+), , общее решение в зависимости от величины k и n:

1) при n