Теоретическая механика лекции из МАИ (ворд) (LCT_MES5)

Посмотреть архив целиком

7. Средства и методы измерений неэлектрических величин


7.1 Средства и методы измерения температуры


Будут рассмотрены основные первичные преобразователи (датчики, сенсоры) температуры, применяемые в промышленности. Эти датчики делятся на две группы: генераторные и параметрические. Генераторные датчики основаны на применении термоэлектрического эффекта, открытого в 1823 году Зеебеком. Эти датчики не требуют питания, поскольку являются источниками термоэдс, которая возникает вследствие разности работы выхода электронов из разных металлов.

Принцип действия параметрических датчиков температуры заключается в использовании зависимости от температуры сопротивления, которое оказывают металлы электрическому току. Поэтому практическое применение параметрических датчиков невозможно без источника тока.


7.1.1. Термоэлектрические датчики температуры


Термоэлектрический промышленный датчик температуры, как правило, представляет собой два провода из различных металлов, одни концы которых соединены между собой (так называемые горячие концы), а вторые концы (холодные концы) подводят термоЭДС ко входу последующих приборов, измеряющих эту термоЭДС, либо ко входу вторичных электронных измерительных преобразователей. Эти два провода со спаянными концами называются термопарой. Для защиты горячих концов термопары от воздействия среды, в которую погружается датчик и которая может оказаться абразивной или агрессивной, эти концы обычно размещаются внутри оболочки, которая заполняется сыпучим электроизоляционным материалом, фиксирующим положение горячего конца термопары относительно защитного корпуса.

Поскольку термоЭДС зависит от разности температур горячих и холодных концов термопары:

,

в идеальном случае холодные концы термопары должны находиться при температуре тающего льда, то есть при , как это показано на рис. 54 а. Однако, такая температура в промышленных условиях не может воспроизводиться постоянно. Поэтому в реальных ситуациях применяют один из двух приемов компенсации температуры холодных спаев термоэлектрического датчика температуры, показанных на рис. 54 б, в.


Первый из этих приемов заключается в следующем. Холодные концы приходят на зажимы, расположенные при одинаковой температуре. Отсутствие градиента температуры между зажимами обеспечивается благодаря заключению этих зажимов в закрытый ящик или за счет подкладывания массивной медной плиты под плату с зажимами. В ящик или на плиту устанавливается медный термометр сопротивления , включенный в мост. Этот мост уравновешивается при температуре термометра сопротивления, равной нулю. Если температура места подсоединения холодных спаев отличается от нуля, в измерительной диагонали моста возникает напряжение, которое компенсирует это отличие.

Второй прием применяется в случаях, когда с помощью одного прибора или ИИС выполняются измерения температуры в нескольких точках объекта. В этих случаях холодные концы термопар подводятся к одной кроссовой панели, снабженной системой выравнивания температуры во всех точках панели. На этой кроссовой панели устанавливается медный термометр сопротивления , через который протекает стабильный ток . Все каналы измерения температуры опрашиваются коммутатором, в том числе в каждом цикле опроса опрашивается также канал измерения температуры кроссовой панели, и стало быть холодных концов всех термопар. Результат этого измерения используется микропроцессором или компьютером для того, чтобы вычислить и ввести поправку на температуру холодных спаев во все результаты измерений.

Материалы, из которых изготавливаются промышленные термопары: платина, сплавы платины с родием, хромель, копель и алюмель. Для высокотемпературных термопар применяется сплав вольфрама с рением. Функции преобразования (градуировочные характеристики) стандартных термопар приведены в ГОСТ 3044. Конструктивное исполнение (диаметр, длина погружаемой части, крепежные размеры и т.д.) приведены в ГОСТ 6616. В таблице 3 приводятся основные характеристики наиболее распространенных промышленных термоэлектронных датчиков температуры.


Таблица 3.

Характеристики термоэлектронных датчиков температуры


Тип

датчика

Пределы

измерений

°С

Выходное

напряжение

мВ

Пост.

врем.

с

Абсолютная

погрешность

мВ

Абсол.

погр.

°С

ТПП

платина-

плат.-родий

(10% родия)

(-20 ¸1300)

Кратковремен-но - до 1600

0 ¸ 13

40.0

60.0

210.0

(1¸3)

ТПР

плат.-родий

(6%родия)

плат.-родий

(30%родия)

(300 ¸ 1600)

Кратковремен-но до 1800

0 ¸ 11

40.0

60.0

210.0

(1¸5)

ТХА

хромель-

алюмель

(-50 ¸ 1000)

Кратковремен-но до 1300

-1.86 ¸ 41

40.0

60.0

210.0

(3 ¸ 10)

ТХК

хромель-

копель

(-50 ¸ 600)

Кратковремен-но до 800

-3 ¸ 49

40.0

60.0

210.0

(2 ¸ 6)

Вольфрам-

рений

5% - 20%

0 ¸ 2200

Кратковремен-но до 2500

0 ¸ 34

40.0

60.0

210.0

(5 ¸10)


Обычно на промышленных предприятиях датчик бывает удален от прибора или системы на расстояние до километра. Такая ситуация характерна, например, для атомных электростанций. Поэтому использовать в качестве линий связи датчика с прибором те же провода, из которых выполнена термопара, в ряде случаев невыгодно. Особенно это относится к платиновым и платинородиевым термопарам. Поэтому для соединения термопар с прибором или системой используются удлинительные термоэлектроды. Эти электроды должны удовлетворять двум условиям.

Первое условие - места присоединения удлинительных электродов к основным термоэлектродам (обычно - в головке термопары, см. рис. 54) должны иметь одинаковую температуру.

Второе условие - удлинительные электроды должны иметь ту же термоэдс в местах присоединения, которую имеют в этих местах основные электроды (обычно в диапазоне температур от 0°С до 200°С).

Для платиновых термопар применяются удлинительные термоэлектроды из меди, для термопары ТХА - из меди и константана, для ТХК - основные термоэлектроды, выполненные в виде гибких проводов.

Из таблицы 3 следует, что промышленные термопары, заключенные в массивные оболочки, предназначены для измерения практически постоянной или очень медленно изменяющейся температуры. Однако в ряде случаев в народном хозяйстве, а также при научных исследованиях возникает задача измерения быстроизменяющихся температур, спектр которых распространяется до частот порядка 50 80 Гц. Для измерения таких температур применяются сверхминиатюрные термопары, в том числе, открытые. Эти термопары изготавливаются из проволоки диаметром 10 20 мкм, диаметр горячего спая достигает 0,2 мм. Постоянная времени подобных термопар составляет величины порядка 0.003 0.01 с. Схемы включения подобных термопар аналогичны схемам, показанным на рис. 54.

Основные источники погрешностей измерения температуры с помощью термопар:

- погрешности применения, вызванные неверным монтажом, ошибками в заглублении термопар, движением среды и др.,

- инструментальные погрешности, вызванные собственным сопротивлением основных термоэлектродов, погрешностями компенсации температуры холодных спаев, погрешностями и разбросом характеристик, окислением термоэлектродов.

7.1.2. Термометры сопротивления проволочные


Термометры сопротивления суть параметрические датчики температуры, поскольку от температуры зависит параметр резистора, а именно, его сопротивление постоянному току. Градуировки промышленных термометров сопротивления приводятся в ГОСТ 3044, а конструктивные параметры (диаметр оболочки, глубина погружения, крепежные размеры и прочее приводятся в ГОСТ 6651. Наиболее популярными являются два вида термометров сопротивления - платиновый и медный. Их основные характеристики приведены в таблице 4.

Поскольку датчики параметрические, для измерения их параметра - сопротивления через них приходится пропускать ток и измерять падение напряжения на этом сопротивлении . Сила тока, рекомендуемая действующей нормативной документацией для пропускания через термометр сопротивления, выбирается из ряда:

0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0 мА.

Понятно, что при этом нельзя допускать перегрева термосопротивления, ибо этот перегрев будет вызывать погрешность результата измерений. Допустимый перегрев указан в таблице 4, и верхнее значение допустимой силы тока может быть получено из формулы : , где - температура перегрева, d - диаметр провода (мм), из которого изготовлено термосопротивление.

Таблица 4

Характеристики промышленных термометров сопротивления

Тип

термо-метра

Класс

точности

Пределы

измерения


°C

Абсолютная погрешность


°К

Сопротив-

ление при

t° = 0

Ом

Темпе-ратура собств.

нагрева

Пост.

времени


с

ТСП

плати-

новый


I



II

(-200 ¸ 0)

(0 ¸ 600)

(-200 ¸ 0)

(0 ¸ 600)


10 Ом

46 Ом

100 Ом




< 0,2°C


9

80

240

ТСМ

мед-ный

I


II

(-50 ¸ 180)


(-50 ¸ 180)


53 Ом

100 Ом


<0,4°C

9

80

240


Случайные файлы

Файл
history.DOC
89961.rtf
53323.doc
138718.rtf
35202.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.