Расчет характеристик участка линейного нефтепровода (146329)

Посмотреть архив целиком

Классификация нефтепродуктопроводов и нефтепроводов.

Трубопровод, предназначенный для перекачки нефтей, называется нефтепроводом, а нефтепродуктов – нефтепродуктопроводом. Последние в зависимости от вида перекачиваемого продукта называют бензопроводами, мазутопроводами и т. д.

В зависимости от назначения, территориального расположения и длинны трубопроводы делят на внутренние (внутрибазовые, внутризаводские, внутрицеховые, внутри промысловые), местные (между перекачивающей станцией и нефтебазой, заводом и нефтебазой и т.д.), магистральные.

К магистральным нефтепроводам и нефтепродуктопроводам относятся:

  • Нефтепроводы и отводы от них, по которым нефть подается на нефтебазы и перевалочные нефтебазы

  • Нефтепродуктопроводы и отводы от них, по которым нефтепродукты с головной насосной станции подаются на нефтебазы.

Магистральный нефтепровод работает круглосуточно в течение всего года. Он имеет относительно большой диаметр и длину. Для перекачки по нему нефтей и нефтепродуктов создается давление 5,0 – 6,5 МПа.

Основные объекты и сооружения магистральных трубопроводов.

Магистральный трубопровод состоит из следующих комплексов сооружений.

  1. Подводящих трубопроводов, связывающих источники нефти или нефтепродуктов с головными сооружениями трубопровода. По этим трубопроводам перекачивают нефть от промысла или нефтепродукт от завода в резервуары головной станции.

  2. Головной перекачивающей станции, на которой собирают нефть и нефтепродукты, предназначенные для перекачки по магистральному трубопроводу. Здесь производят приемку нефтепродуктов, разделение их по сортам, учет и перекачку на следующую станцию.

  3. Промежуточных перекачивающих станций, на которых нефть, поступающая с предыдущей станции, перекачивается далее.

  4. Конечных пунктов, где принимают продукт из трубопровода, распределяют потребителям или отправляют далее другими видами транспорта.

  5. Линейных сооружений трубопровода. К ним относятся собственно трубопровод, линейные колодцы на трассе, станции катодной и протекторной защиты, дренажные установки, а так же переходы через водные препятствия, железные и автогужевые дороги.

Основной составной частью магистрального трубопровода является собственно трубопровод. Глубину заложения трубопровода определяют в зависимости от климатических и геологических условий, а так же с учетом специфических условий, связанных с необходимостью поддержания температуры перекачиваемого продукта.

На трассе с интервалом 10 – 30 км, в зависимости от рельефа, устанавливают линейные задвижки для перекрытия участков трубопровода в случае аварии. Промежуточные станции размещают по трассе трубопровода согласно гидравлическому расчету. Среднее значение перегона между станциями 100 – 200 км.




















Рассмотрим участок трубопровода между двумя промежуточными станциями.



РН РК

D

L



Дано:

М = 198 [кг/с] – массовый расход

D = 1,22 [м] – диаметр трубы

К э = 0,001 [м] – шероховатость трубы

r = 870 [кг/м3] – плотность

u = 0,59 * 10-42/с] - вязкость

Рн = 5,4 * 106 [кг/мс2] – давление

L = 1.2 * 105 [м] – длина нефтепровода

С = 1483 [м/с] – скорость света в идеальной жидкости

Т = 293°К – температура



Примем допущения:

  1. Жидкость идеальна

  2. Процесс стационарный

  3. Процесс с распределенными параметрами

  4. Трубопровод не имеет отводов

  5. Трубопровод не имеет перепадов по высоте

  6. Движение нефти в трубопроводе ламинарное

  7. Процесс изотермический.














Прежде чем находить математическую модель линейного трубопровода выведем закон сохранения массы и закон сохранения количества движения.

Закон сохранения массы.

Этот закон гласит: масса любой части материальной системы, находящейся в движении, не зависит от времени и является величиной постоянной. Поскольку скорость изменения постоянной величины равна нулю, полная производная по времени от массы любой части рассматриваемой системы будет так же равна нулю. Математически это запишется так:

(1)

где r(х) – плотность вещества х = (х1, х2, х3) – координаты точки W - произвольный объем системы dV – дифференциал объема (dV = dx1 + dx2 + dx3)

Это уравнение называется интегральной формой закона сохранения массы.

Движение системы можно задать тремя функциями (2)

определяющими в момент времени t при t = t0 точка занимала положение .

Выразим начальные координаты через текущие . (3)

Перейдем от координат к получим:

(4)

где J – якобиан преобразования.

(5)

Делая обратный переход от к получим:

(6)

По правилу дифференцирования определителей получим:

(7)

примем

Из этого равенства и определения якобиана следует

(8)

С учетом этого равенства, уравнение (6) примет вид.

= 0 (9)

Раскрывая полную производную по времени в подынтегральном выражении по правилу

(10)

приведем уравнение (9) к виду

(11)

В силу произвольности выбора множества W из (9) следует, что подынтегральное выражение должно быть равно нулю.

(12)

Эта формула называется законом сохранения массы в дифференциальной форме.

Для одномерного течения жидкости уравнение примет вид

(13)



Закон сохранения количества движения.

Этот закон гласит: скорость изменения количества движения любой части материальной системы, находящейся в движении, равна сумме всех внешних сил. В математическом виде этот закон запишется так:

(1)

где (2)

Fv – силы обусловленные силовыми полями

Fs – силы действующие на единицу поверхности.

Подставив (2) в (1) получим интегральную форму записи закона сохранения количества движения

. (3)

Это векторное уравнение эквивалентно системе из трех уравнений, отражающих закон сохранения количества движения по каждой из координат х1, х2, х3

(4)

Пользуясь правилами дифференцирования интеграла, взятого по изменяющемуся объему и объединяя два слагаемых, получим

. (5)

Учитывая приведем (5) к виду

. (6)

Поскольку это равенство справедливо при произвольном объеме подынтегральное выражение (6) должно быть равно нулю

. (7)

Выражение (7) есть дифференциальная форма записи закона сохранения количества движения.

Для одномерного случая, когда все составляющие сил и скоростей по всем направлениям, кроме оси х1, равны нулю, уравнения (5) и (7) примет вид

.

Для написания математической модели линейного нефтепровода будем пользоваться этими двумя законами.












Дифференциальная форма записи линейного нефтепровода.

Рассмотрим динамическую модель нефтепровода. Запишем исходные уравнения законов сохранения массы и количества движения в интегральной форме

(1)

(2)

В качестве объема W выберем цилиндр, вырезанный из потока двумя перпендикулярными к оси трубы сечениями, отстоящими друг от друга на расстоянии DХ1. Считая DХ1 малой величиной, уравнения можно записать в виде

(3)

(4)

где S0 – площадь основания выделенного цилиндра

; d – диаметр трубы.

Считая величины и постоянными по сечению и переходя к средней скорости потока v по сечению трубы по правилу