Расчет механизмов – козлового консольного крана грузоподъемностью 8 тонн (146305)

Посмотреть архив целиком

18





Содержание

1 Введение 2


2 Исходные данные 3


3 Расчёт механизма подъема груза 4


4 Расчёт механизма перемещения крана 10


5 Расчёт механизма перемещения тележки 14


6 Выбор приборов безопасности 18


7 Литература 19




















Введение

Козловые краны применяют для обслуживания открытых складов и погрузочных площадок, монтажа сборных строительных сооружений и оборудования, промышленных предприятии, обслуживания гидротехнических сооружений, перегрузки крупнотоннажных контейнеров и длинномерных грузов. Козловые краны выполняют преимущественно крюковыми или со специальными захватами.

В зависимости от типа моста, краны делятся на одно- и двухбалочные. Грузовые тележки бывают самоходными или с канатным приводом. Грузовые тележки двухбалочных кранов могут иметь поворотную стрелу.

Опоры крана устанавливаются на ходовые тележки, движущиеся по рельсам. Опоры козловых кранов выполняют двухстоечными равной жёсткости, или одну -жёсткой, другую -гибкой(шарнирной).

Для механизмов передвижения козловых кранов предусматривают раздельные приводы. Приводными выполняют не менее половины всех ходовых колёс.

Обозначение по ГОСТ : Кран козловой 540-33 ГОСТ 7352-75

























Исходные данные.

Таблица № 1.

Грузоподъемность крана

8 тонн

Пролет

25 метров

Высота консолей

4,5 метра

Скорость подъема груза

0,2 м/с

Скорость передвижения тележки

38 м/мин

Скорость передвижения крана

96 м/мин

Высота подъема

9 метров

Режим работы
























Расчет механизма подъема груза.

Механизм подъёма груза предназначен для перемещения груза в вертикальном направлении. Он выбирается в зависимости от грузоподъёмности.

Привод механизма подъёма и опускания груза включает в себя лебёдку механизма подъёма. Крутящий момент, создаваемый электродвигателем передаётся на редуктор через муфту. Редуктор предназначен для уменьшения числа оборотов и увеличения крутящего момента на барабане.

Барабан предназначен для преобразования вращательного движения привода в поступательное движение каната.

Усилие в канате набегающем на барабан, H:

Fб=Qg/zun0=8000*9,81/2*2*0,99=19818

где: Q-номинальная грузоподъемность крана, кг;

z - число полиспастов в системе;

un – кратность полиспаста;

0 – общий КПД полиспаста и обводных блоков;

Поскольку обводные блоки отсутствуют, то

­0=п=(1 - nблUп)/un(1-бл)=(1-0,982)/2*(1-0,98)=0,99

Расчетное разрывное усилие в канате при максимальной нагрузке на канат Fк=Fб=19818 Н и k=5,5

FFк*k=19818*5,5=108999 Н

где: Fк – наибольшее натяжение в канате (без учета динамических

нагрузок), Н;

k – коэффициент запаса прочности (для среднего режима работы

k=5,5).

Принимаем канат по ГОСТ 2688 – 80 двойной свивки типа ЛК-Р конструкции 6х19(1+6+6/6+1 о.с) диаметром 15 мм имеющий при маркировочной группе проволок 1764 Мпа разрывное усилие F=125500 Н.

Канат – 11 – Г – 1 – Н – 1764 ГОСТ 2688-80


Фактический коэффициент запаса прочности:

kф=F/Fб=125500/19818=6,33>k=5,5


Требуемый диаметр барабана по средней линии

навитого стального каната, мм

Dd*e=15*25=375

где: d – диаметр каната

е – коэффициент зависящий от типа машины, привода механизма и

режима работы машины механизма.

Принимаем диаметр барабана D=400 мм.

Длина каната навиваемого на барабан с одного полиспаста при z1=2 и

z2=3, м:

Lк=H*Uп+*D(z1+z2)=9*2+3,14*0,4(2+3)=24,28

где: Н – высота поднимаемого груза;

Uп – кратность полиспаста;

D – диаметр барабана по средней линии навитого каната;

z1 – число запасных ( неиспользуемых ) витков на барабане до места

крепления: (z1=1,5…2)

z2 – число витков каната, находящихся под зажимным устройством на

барабане: z2=3…4.

Рабочая длина барабана, м:

Lб=Lk*t/*m(m*d+D)*=24,28*0,017/3,14*1(1*0,015+0,4)=0,239

где: Lк – длина каната, навиваемого на барабан;

t – шаг витка;

m – число слоев навивки;

d – диаметр каната;

- коэффициент не плотности навивки; для гладких барабанов;

Полная длина барабана, м:

L=2Lб+l=2*0,444+0,2=1,088

Толщина стенки литого чугунного барабана должна быть, м:

min=0,02Dб+(0,006…0,01)=0,02*0,389+0,006…0,01=0,014

=0,018

Принимаем =16 мм.

Dб=Dd=0,4 – 0,015=0,385 м.

Приняв в качестве материала барабана чугун марки СЧ 15 (в=650 Мпа,

[сж]=130 Мпа) найдем напряжения сжатия стенки барабана:

сж=Fб/t[сж] = 19818/17*10-3*16*10-3 = 72,86 Мпа<130 М

где: Fб – усилие в канате, Н;

t – шаг витков каната на барабане, м;

[сж] – допускаемое напряжение сжатия для материала барабана; Статическая мощность двигателя при = 0,85, кВт:

Pc=Q*g*vг/103*=8000*9,81*0,2/1000*0,85=18,46

где: Q – номинальная грузоподъемность, кг;

vг – скорость подъема груза, м/с;

- КПД механизма

Номинальная мощность двигателя принимается равной или несколько меньше статической мощности. Из таблицы III.3.5 выбираем крановый электродвигатель с фазным ротором MTF – 311 – 6 имеющим ПВ=25% номинальную мощность Рном=13 кВт и частоту вращения n=935 мин-1. Момент инерции ротора Ip=0,225 кг*м2 максимальный пусковой момент двигателя Тmax=320 H*м.

Частота вращения барабана (мин-1):

nб=60vг*Uп/*Dрасч=60*0,2*2/3,14*0,4=19,1

где: Uп – кратность полиспаста;

Dрасч – расчетный диаметр барабана, м.

Общее передаточное число привода механизма:

U=n/nб=935/19,1=148,93

Расчетная мощность редуктора на быстроходном валу, кВт:

Рр=kр*Р = 1*18,46=18,46

где: kр – коэффициент, учитывающий условия работы редуктора;

Р – наибольшая мощность передаваемая редуктором при нормально протекающем процессе работы механизма.

Из таблицы III.4.2 по передаточному числу и мощности выбираем редуктор цилиндрический, двухступенчатый, горизонтальный, крановый типоразмера Ц2 – 400 с передаточным числом Uр =50,94 и мощностью на быстроходном валу при среднем режиме работы Рр = 19,4 кВт

Момент статического сопротивления на валу двигателя в период пуска с учетом того, что на барабан навиваются две ветви каната при б=0,94 и

пр=0,9 (ориентировочно), Н*м:

Тс=Fб*z*Dбг/2u*б*пр=19818*2*0,4/2*50,94*0,94*0,9=183,94

Номинальный момент передаваемый муфтой принимается равным моменту статических сопротивлений Тмномс=135 Н*м.

Номинальный момент на валу двигателя Н*м:

Тном=9550Р/n=9550*13/935=132,78

Расчетный момент для выбора соединительной муфты, Н*м:

Тммном*k1*k2=183,94*1,3*1,2=286,94

Выбираем по таблице 5.9 втулочно–пальцевую муфту №1 с тормозным шкивом диаметром Dт=200 мм, и наибольшим передаваемым крутящим моментом 500 Н*м.

Момент инерции муфты Iм=0,125 кг*м2. Момент инерции ротора и муфты I=Iр+Iм=0,225+0,0125=0,35 кг*м2

Средний пусковой момент двигателя при =1,4, Н*м:

Тпуск=Тср.п=(max+min)*Tном/2=(2,41+1,4)*132,78/2=252,9

где: max=Tмахном=320/132,78=2,41

min- минимальная кратность пускового момента электродвигателя:

min=1,1…1,4

Тмах- максимальный пусковой момент двигателя, Н*м,

Тном- номинальный момент двигателя, Н*м,

Время подъема и опускания груза

tп=(*I*n/9,55(Тср.пс))+9,55*Q*v2/n((Тср.пс)*=

=(1,1*0,35*935/9,55(252,94-183,94))+

+9,55*8000*0,1942/935(252,94-183,94)=1,14

где: Тср.п – средний пусковой момент двигателя, Н*м

Тс – момент статического сопротивления соответственно на валу двигателя при пуске.


Фактическая частота вращения барабана по формуле, мин-1:

nбф=n/uр=935/50,94=18,354


Фактическая скорость подъема груза, м/с:

vгф=*Dрасч*nбф/60uп=3,14*0,4*18,54/60*2=0,194

где: uп – кратность полиспаста

Dрасч- расчетный диаметр барабана

Эта скорость отличается от ближайшего значения 0,2 м/с из стандартного ряда на допустимую величину.


Ускорение при пуске, м/с2:

а=vгф/tп=0,194/1,14=0,17

Рис. 1. Усредненный график загрузки механизма подъема




























0 0,2 0,4 0,6 0,8

Из графика усредненной загрузки механизма определим моменты, развиваемые двигателем, и время его пуска при подъеме и опускании груза в различные периоды работы механизма. Согласно графику, за время цикла (подъем и опускание груза) механизм будет работать с номинальным грузом Q=8000 кг – 1 раз.

0,5Q=4000 кг – 5 раз.

0,2Q=1600 кг – 1 раз.

0,05Q=400 кг – 3 раза.


















Таблица № 2. – Моменты, развиваемые двигателем, и время его пуска


Наименование показателя


Обозна-чение



Едини- ца


Результаты расчета при массе

поднимаемого груза, кг


8000

4000

1600

400


КПД


Натяжение каната у барабана при подъеме груза


Момент при подъеме груза


Время пуска при подъеме


Натяжение каната у барабана при опускании груза


Момент при опускании груза


Время пуска при опускании




Fб



Тс


tп


Fcоп



Tсоп


tоп


-


Н



Н*м


С


Н



Н*м


с



0,85


19818



183,94


1,14


19423



140


0,09


0,8


9909



97,902


0,34


9711



70


0,11


0,65


3963



45,52


0,27


3884,8



28


0,13


0,5


990



14,45


0,22


971



6,9


0,14


В таблице избыточный момент при опускании груза – сумма среднего пускового момента двигателя и момента статических сопротивлений механизма при опускании груза.


Средняя высота подъема груза составляет 0,5…0,8 номинальной высоты Н=9м. Примем Нср=0,8*Н=0,8*9=7,2 м.


Время установившегося движения, с:

ty=Нср/vг=7,2/0,194=37,11


Сумма времени пуска при подъеме и опускании груза за цикл работы механизма, с:

tп=1,14+5*0,34+1*0,27+3*0,22+0,09+5*0,11+1*0,13+3*0,14=4,96

Общее время включений двигателя за цикл с:

t=2(1+5+1+3)*ty+tп=2*10*37,11+4,96=747,16


Среднеквадратичный момент Н*м

Тср== (252,942*4,96+(1832+5*972+452+3*142+1402+5*702+282+3*6,92)/747,16)=52,3

где: tп – общее время пуска механизма в разные периоды работы с различной нагрузкой, с;

Т2сty – сумма произведений квадрата моментов статических сопротивлений движению при данной нагрузке на время установившегося движения при этой нагрузке.

t – общее время включения электродвигателя за цикл, с.


Среднеквадратическая мощность двигателя, кВт;

Рсрсрп/9550=52,3*935/9550=5,12 кВт

где: Тср – среднеквадратичный момент преодолеваемый электродвигателем.

Во избежание перегрева электродвигателя необходимо, чтобы

развиваемая двигателем среднеквадратичная мощность удовлетворяла условию Рср Рном 13 5,12 – условие соблюдается


Момент статического сопротивления на валу двигателя при торможении механизма, Н*м:

Тс=Fб*z*Dбг*б*т /2uт =19818*2*0,4*0,98*0,85/2*50,94=129,63

где: т – КПД привода от вала барабана до тормозного вала;

uт – общее передаточное число между тормозным валом и валом барабана.

Необходимый по нормам Госгортехнадзора момент, развиваемый тормозом при kт=1,75*Тт=1,75*129,63=226,852 Н*м.

Из таблицы III.5.11 выбираем тормоз ТКТ – 300/200 с тормозным моментом 240 Н*м, диаметром тормозного шкива Dт=300 мм. Регулировкой можно получить требуемый тормозной момент Тт=240 Н*м.


У механизма подъема груза фактическое время торможения при опускании, с:

tп=(*I*n/9,55(Ттс))+9,55*Q*v2/n((Ттс)*= =(1,1*0,35*935/9,55(226-129))+(9,55*8000*0,1942*0,85/935(226-129)=0,41

Для среднего режима работы находим путь торможения механизма подъема груза, м:

S=vгф/1,7=0,194/1,7=0,11


Время торможения в предположении что скорости подъема и опускания груза одинаковы, с:

tтmax=S/0,5vгф=0,11/0,5*0,194=1,17>tт=0,54


Замедление при торможении, м/с2:

ат=vгф/tт=0,194/0,41=0,47


Расчет механизма передвижения крана.

Механизм передвижения крана служит для перемещения крана по рельсам.

Найдем рекомендуемый диаметр ходовых колес Dк=720 мм.

Коэффициент качения ходовых колес по рельсам =0,0006 м. Коэффициент трения в подшипниках качения ходовых колес f=0,02.

Диаметр вала цапфы ходового колеса, мм:

Dк=0,2*720=144. Примем также kр=2,5


Общее сопротивление передвижению крана, Н:

Fпер=Fтр=kp(m+Q)g(fdk+2)/Dk=2,5(22000+8000)*

9,81(0,020*0,14+2*0,0006)/0,720=4087,5


Статическая мощность привода при = 0,85, кВт:

Pc=Fпер*vпер/103*=4087*1,6/1000*0,85=7,693

где: Fпер – сопротивление передвижению крана, кг;

vпер – скорость передвижения крана, м/с;

- КПД механизма

Т.к привод механизма передвижения крана раздельный, то выбираем двигатель приблизительно в два раза по мощности меньше расчетной. Из таблицы III.3.5 выбираем крановый электродвигатель MTF – 111 – 6 имеющим ПВ=25% номинальную мощность Рном=4,1 кВт и частоту вращения n=870 мин-1. Момент инерции ротора Ip=0,048 кг*м2.


Номинальный момент на валу двигателя Н*м.

Тном=9550Р/n=9550*4,1/870=44,7

Частота вращения вращения ходового колеса (мин-1):

nб=60vпер/*Dк=60*1,6/3,14*0,720=42,16

где: vпер – скорость передвижения крана;

Dк – расчетный диаметр колеса, м.

Требуемое передаточное число привода:

U=n/nк=870/42,46=20,48

Поскольку в приводе механизма перемещения крана должно быть установлено два одинаковых редуктора. Выбираем редуктор типа ВК – 475 передаточное число up=19,68 и Pр=8,3 кВт.


Номинальный момент передаваемый муфтой двигателя, Н*м

Тм=Тс=FперDк/2uр=2043*0,720/2*19,68*0,85=43,98

Расчетный момент для выбора соединительной муфты, Н*м:

Тммном*k1*k2=43,98*1,2*1,2=62,3

Выбираем по таблице III.5.6 втулочно – пальцевую муфту c крутящим моментом 63 Н*м с диаметром D=100 мм,

Момент инерции муфты, кг*м2:

Iм=0,1*m*D2=0,1*2*0,1=0,002


Фактическая скорость передвижения крана, м/с:

vперф=vпер*u/up=1,6*20,48/19,68=1,66 – отличается от стандартного ряда на допустимую величину.

Примем коэффициент сцепления ходовых колес с рельсами =0,12

коэффициент запаса сцепления k=1,1.


Вычисляем максимально допустимое ускорение крана при пуске в предположении, что ветровая нагрузка Fp=0, м/с2

amax=[(zпр((/k)+(f*dk/Dk))/z)-(2+f*dk)kp/Dk)*g=

=(2((0,12/1,1)+(0,02*0,144/0,720))/4-

-(2*0,0006+0,02*0,144)*2,0/0,720)*9,81=0,66

где: zпр- число приводных колес;

z – общее число ходовых колес;

- коэффициент сцепления ходовых колес с рельсами: при

работе на открытом воздухе =0,12

f – коэффициент трения (приведенной к цапфе вала) в подшипниках

опор вала ходового колеса

- коэффициент трения качения ходовых колес по рельсам м;

dk – диаметр цапфы вала ходового колеса, м:

kp – коэффициент, учитывающий дополнительное сопротивления от трения реборд ходовых колес

Средний пусковой момент двигателя, Н*м:

Тср.п=(max+min)*Tном/2=(2,25+1,1)*43,98/2=93,66

где: min- минимальная кратность пускового момента электродвигателя:

min=1,1…1,4


Наименьшее допускаемое время пуска по условию сцепления, с:

tдоп=v/amax=1,66/0,66=2,515


Момент статических сопротивлений при работе крана без груза, Н*м:

Тс=FперDк/2uр=2445,96*0,72/2*19,68*0,85=52,6


Момент инерции ротора двигателя Iр=0,048 кг*м2 и муфты быстроходного вала Iм=0,002

I=Ip+Iм=0,048+0,002=0,050 кг/м2


Фактическое время пуска механизма передвижения без груза, с:

tп=(*I*n/9,55(Тср.пс))+9,55*Q*v2/n((Тср.пТс)*=

=(12*0,05*870/9,55(93,66-52,6))+9,55*11000*1,662/870(93,66- 52,6)*0,85=7,95 с


Фактическое ускорение крана без груза, м/с2

аф=Vпер/tп=1,66/7,95=0,208<amax=0,66 м/с2


Проверяем суммарный запас сцепления. Для этого найдем:


А) суммарную нагрузку на привод колеса без груза, Н:

Fпр=m*zпр*g/z=2*22000*2*9/4=107910

Б) сопротивление передвижению крана без груза, Н: Fпер=kp*m*g(f*dk+2)/Dk=2*22000*9,81*(0,02*0,144+2*0,0006)/0,720=

= 2445,96


Определим фактический запас сцепления:

k=Fпр*/F’пер+mg((a/g)-zпр*f*dk/z*Dk)=

=107910*0,12/2445,96+22000*9,81((0,208/9,81)-2*0,02*0,144/4*0,72)=1,34>1,2

Определение тормозных моментов и выбор тормоза. Максимальное допустимое замедление крана при торможении, м/с2:

amaxт=((zпр((/k)-(f*dk/Dk))/z)+(2+f*dk)/Dk)*g=((2((0,12/1,1)-(0,02*0,144/0,720))/4)+(2*0,0006+0,02*0,144)/0,720)*9,81=0,571

По таблице принимаем амахт=0,15 м/с2


Время торможения крана без груза, с:

tt=Vфпермахт=1,66/0,15=11,06


Сопротивление при торможении крана без груза, Н:

Fтрт=mg(f*dk+2)/Dk=22000*9,81(0,02*0,144+2*0,0006)/0,720=1222,98


Момент статических сопротивлений на тормозном валу при торможении крана, Н*м:

Тст=Fттр*Dk*/2*up=1222,98*0,720*0,85/2*19,68=19,01

Момент сил инерции при торможении крана без груза, Н*м:

Тинт=(*I*n/9,55*tт)+9,55*m*v2*/n*tт=

=(1,2*0,05*870/9,55*11,06)+9,55*22000*1,662*0,85/870*

*11,06=51,63

где: tт- время торможения механизма, с:


Расчетный тормозной момент на валу тормоза, Н,м:

Тртинт – Тст=51,63-11,06=40,57


Из таблицы III 5.13 выбираем тормоз типа ТКГ – 160 с диаметром тормозного шкива Dт=160 мм и наибольшим тормозным моментом Тт=100 Н*м, который следует отрегулировать до Тт=41 Н*м.


Минимальная длина пути торможения, м:

S=V2/R=1,662/0,9=3,06

Фактическая длина пути торможения, м:

Sф=0,5*v*tт=0,5*1,66*11,06=9,17




Расчет механизма передвижения грузовой

тележки.


Найдем рекомендуемый диаметр ходовых колес Dк=360 мм.

Коэффициент качения ходовых колес по рельсам =0,0006 м. Коэффициент трения в подшипниках качения ходовых колес f=0,02.

Диаметр вала цапфы ходового колеса, мм:

Dк=0,2*360=72 Примем также kр=2,5


Общее сопротивление передвижению крана, Н:

Fпер=Fтр=kp(m+Q)g(fdk+2)/Dk=2,5(3200+8000)*

9,81(0,02*0,072+2*0,0006)/0,36=2014,31



Статическая мощность привода при = 0,85, кВт:

Pc=Fпер*vпер/103*=2014*0,63/1000*0,85=1,49 кВт.

где: Fпер – общее сопротивление передвижению тележки, Н;

vпер – скорость передвижения грузовой тележки, м/с;

- КПД механизма

Из таблицы III.3.5 выбираем крановый электродвигатель MTF – 011-16 имеющим ПВ=25% номинальную мощность Р=1,7 кВт и частоту вращения n=835 мин-1. Момент инерции ротора Ip=0,02 кг*м2.


Номинальный момент на валу двигателя Н*м:

Тном=9550Р/n=9550*1,7/835=19,44


Частота вращения вращения ходового колеса (мин-1):

nб=60vпер/*Dк=60*0,63/3,14*0,36=32,89

где: vпер – скорость передвижения тележки м/с;

Dк – расчетный диаметр колеса, м.

Требуемое передаточное число привода:

U=n/nк=835/32,89=25,38

Поскольку в приводе механизма перемещения крана должно быть установлено два одинаковых редуктора. Выбираем редуктор типа ВК – 475 передаточное число up=29,06 и Pр=8,1 кВт.

Номинальный момент передаваемый муфтой двигателя, Н*м:

Тм=Тс=FперDк/2uр=2014,31*0,36/2*29,06*0,85=14,67

Расчетный момент для выбора соединительной муфты, Н*м:

Тммном*k1*k2=14,47*1,2*1,2=21,12

Выбираем по таблице III.5.6 втулочно – пальцевую муфту c крутящим моментом 31,5 Н*м с диаметром D=90 мм.


Момент инерции муфты, кг*м2:

Iм=0,1*m*D2=0,1*2*0,09=0,018


Фактическая скорость передвижения тележки, м/с:

vперф=vпер*u/up=0,63*25,38/29,06=0,55 – отличается от стандартного ряда на допустимую величину.

Примем коэффициент сцепления ходовых колес с рельсами =0,12

коэффициент запаса сцепления k=1,1.


Вычисляем максимально допустимое ускорение грузовой тележки при пуске в предположении, что ветровая нагрузка Fp=0, м/с2

amax=[(zпр((/k)+(f*dk/Dk))/z)-(2+f*dk)kp/Dk)*g=

=(2((0,12/1,1)+(0,02*0,072/0,36))/4-

-(2*0,0006+0,02*0,072)*2,5/0,36)*9,81=0,46 м/с2

где: zпр- число приводных колес;

z – общее число ходовых колес;

- коэффициент сцепления ходовых колес с рельсами: при

работе на открытом воздухе =0,12

f – коэффициент трения (приведенной к цапфе вала) в подшипниках

опор вала ходового колеса

- коэффициент трения качения ходовых колес по рельсам м;

dk – диаметр цапфы вала ходового колеса, м:

kp – коэффициент, учитывающий дополнительное сопротивления от трения реборд ходовых колес


Случайные файлы

Файл
11355.rtf
62483.rtf
niderlands.doc
10320.rtf
163871.rtf