Разработка и внедрение автоматизированных систем управления технологического оборудования минипекарень (D_45_S1)

Посмотреть архив целиком

Выбор элементов и конструкции системы управления расстойным шкафом

Состав системы управления

Исходя из требований, предъявляемых к системе управления расстойным шкафом, входящим в состав минипекарни, в данном дипломе была выбрана следующая конструкция СУ, представленная на чертежах.

В состав данной системы управления входят следующие элементы:

  1. Блок подогрева и увлажнения циркулирующего воздуха

    1. Конструктивные элементы

      1. Герметичная металлическая емкость ;

      2. Верхняя крышка;

      3. Крышка ТЭНов;

      4. Крышка датчиков уровня воды;

    2. Нагревательные элементы (ТЭНы)

      1. ТЭН подогрева воздуха;

      2. ТЭН подогрева воды;

    3. Элементы систем подачи и слива воды

      1. Фильтр поступающей воды;

      2. Электроклапан подачи воды;

      3. Электроклапан подачи воды для очистки от накипи;

      4. Наливные и сливные трубопроводы;

      5. Сливной насос;

    4. Элементы системы циркуляции влажного воздуха

      1. Циркуляционный вентилятор;

      2. Приводной мотор циркуляционного вентилятора (асинхронный трехфазный двигатель);

      3. Воздуховод;

    5. Датчики

      1. Датчик температуры циркулирующего воздуха;

      2. Датчик относительной влажности циркулирующего воздуха;

      3. Датчик предельно допустимой температуры ТЭНов;

      4. Датчики уровня воды

        1. Датчик максимального уровня воды;

        2. Датчик минимального уровня воды, при котором начинается ее доливка;

        3. Датчик опасного, вследствие оголения ТЭНов поддержания влажности, уровня воды;

  2. Блок электронной системы автоматического управления

    1. Автоматический отключатель;

    2. Предохранители;

    3. Преобразователь частоты;

    4. Система автоматического управления;

    5. Реле включения ТЭНов

      1. Реле включения ТЭНа поддержания температуры циркулирующего воздуха;

      2. Реле включения ТЭНа поддержания относительной влажности циркулирующего воздуха;

    6. Трансформатор для питания мотора сливного насоса;

    7. Задатчики

      1. Задатчик скорости вращения циркуляционного вентилятора;

      2. Задатчик допуска поддерживаемой температуры;

    8. Разъемы

      1. Разъем питания;

      2. Разъем датчиков;

      3. Разъем панели управления;

      4. Разъем сервисный, служащий для наладки, контроля и поиска неисправности в системе управления расстойным шкафом;

  3. Панель управления

    1. Выключатели

      1. Выключатель питания;

      2. Выключатель управления;

    2. Задатчики

      1. Здатчик температуры;

      2. Задатчик влажности;

    3. Индикатор температуры;

    4. Индикаторные лампы

      1. Лампа включения питания;

      2. Лампа возникновения неисправности;

      3. Лампа включения сливного насоса;

      4. Лампа включения ТЭНа поддержания температуры циркулирующего воздуха;

      5. Лампа включения ТЭНа поддержания относительной влажности циркулирующего воздуха;

Принцип работы системы управления расстойным шкафом

При включении выключателя питания СУ расстойным шкафом запускает мотор циркуляционного вентилятора, который обеспечивает циркуляцию воздуха в камере расстойного шкафа. При этом на панели управления загорается лампа включения питания. Скорость вращения мотора циркуляционного вентилятора, влияющая на скорость циркуляции воздуха, задается с помощью задатчика скорости циркуляционного вентилятора и поддерживается с помощью преобразователя частоты. Одновременно происходит слив воды из блока подогрева и увлажнения циркулирующего воздуха с последующим набором новой воды и переходом в режим очистки ТЭНов поддержания влажности от накипи, путем их кратковременного включения с непрекращающимся сливом и набором воды. Во время этой операции на панели управления горит лампа Слив/Очистка.

При включении выключателя управления СУ переходит в режим поддержания температуры и относительной влажности, заданных задатчиками температуры и влажности.

При недостаточной температуре циркулирующего воздуха в камере расстойного шкафа система управления выдает сигнал на включение ТЭНов поддержания температуры, которые, находясь в потоке циркулирующего воздуха, нагревают его, а он, в свою очередь, передает энергию тестовым заготовкам, расположенным на тележках в камере расстойного шкафа. О работе ТЭНов поддержания температуры воздуха информирует соответствующая лампа на панели приборов, горящая при включенных ТЭНах. При превышении температуры циркулирующего воздуха заданной с помощью задатчика температуры на панели управления на величину допуска, установленного задатчиком допуска на поддерживаемую температуру, система управления выдает сигнал на отключение ТЭНов поддержания температуры. Циркулирующий в камере расстойного шкафа воздух за счет потерь энергии через стенки и на прогрев тестовых заготовок и тележек начинает охлаждаться. При понижении его температуры до нижнего значения допуска, система управления выдает сигнал на включение ТЭНов подогрева воздуха. Таким образом обеспечивается поддержание заданной температуры циркулирующего в камере расстойного шкафа воздуха.

Поддержание относительной влажности циркулирующего в камере расстойного шкафа воздуха происходит аналогично. При недостаточной влажности система управления выдает сигнал на включение ТЭНов поддержания влажности, которые, находясь в воде, нагревают ее. При этом испарившаяся часть воды идет на увлажнение циркулирующего в камере расстойного шкафа воздуха. При достижении заданной с помощью задатчика относительной влажности на панели управления влажности воздуха система управления выдает сигнал на отключение, а при ее понижении (за счет конденсации) на величину допуска - на включение ТЭНов поддержания влажности. О работе ТЭНов поддержания относительной влажности воздуха в камере расстойного шкафа информирует соответствующая лампа на панели приборов, горящая при включенных ТЭНах. Уровень воды в блоке увлажнения и нагрева поддерживается автоматически.

Система управления обеспечивает безопасность работы расстойного шкафа. Для предотвращения последствий коротких замыканий электрические цепи питания снабжены автоматическими отключателями и предохранителями. Для предотвращения поражения обслуживающего персонала пекарни электротоком выполнено защитное зануление. Для предотвращения перегрева ТЭНов поддержания температуры предусмотрен датчик допустимой температуры данных ТЭНов, а для предотвращения перегрева ТЭНов поддержания влажности предусмотрен датчик контроля минимально допустимого уровня воды в блоке подогрева и увлажнения. При любой неисправности система управления отключает все работающие устройства и подает сигнал путем зажигания на панели управления лампы неисправности.

Расчет параметров СУ, обеспечивающих заданный режим

Выбор мощности ТЭНов

Мощность ТЭНов в системе управления расстойным шкафом должна удовлетворять следующим условиям:

  • Должен быть обеспечен быстрый выход в установившийся режим работы расстойного шкафа;

  • Периодичность циклов включения-выключения ТЭНов не должна быть очень высокой и слишком низкой;

  • Допустимая температура нагрева ТЭНов не должна превышаться.

Путем перебора нескольких значений мощности ТЭНов поддержания температуры воздуха в камере расстойного шкафа и последующего расчета переходного процесса с помощью программы (см. Приложение 1) было выяснено, что оптимальной для данного объема камеры расстойного шкафа и заданного допуска на отклонение поддерживаемой температуры является мощность ТЭНов, равная

Pтэн =2000 Вт.

При такой мощности ТЭНов поддержания температуры воздуха процесс выхода в установившееся состояние занимает примерно 15 минут, периодичность циклов включения‑выключения составляет около 2-х минут, а перегрев ТЭНов выше максимально допустимой температуры не происходит.

Выбор мощности ТЭНов поддержания влажности воздуха в камере расстойного шкафа произведем из условия, что нагрев испаряемой воды с температуры начала расстойки до температуры кипения должен происходить не более чем за 5¸10 мин с начала процедуры расстойки:

Tтэн вл = cводы ´ mводы ´ (100 - T1)/t,

где cводы - теплоемкость воды:

cводы = 4200 Дж/(кг´гр);

mводы - масса воды в блоке увлажнения и подогрева:

mводы = 5 кг;

T1 - температура воды в начале расстойки:

T1 = 20°С.

Тогда:

Tтэн вл = 4200 ´ 5 ´ (100 - 20)/ 450 = 3733 Вт.

Выбираем Tтэн вл = 4000 Вт.

Выбор допуска на отклонение температуры

При моделировании процессов в расстойном шкафу было выяснено, что необходимо выбирать допуск на отклонение поддерживаемой температуры от заданной, по границам которого система управления включает и выключает ТЭНы, меньше чем данный в задании. Это связано с тем, что при поддержании температуры в камере расстойного шкафа присутствуют большие запаздывания, вызванные характером моделируемого объекта. По результатам моделирования с различными допусками на отклонение температуры стало ясно, что оптимальным для данного случая является допуск на отклонение поддерживаемой температуры в 2 раза более строгий, чем данный в задании. Такой допуск обеспечивает невыход температуры за допустимые пределы и, в то же время, не делает слишком коротким цикл включения-выключения ТЭНов, что положительно сказывается на их ресурсе и ресурсе включающих их реле.

Расчет циркуляционного вентилятора

Подбор циркуляционного вентилятора осуществляется по его объемной производительности (Vцир) и напору (Нцир).

Объемная производительность расчитывается по формуле:

Vцир = uвозд ´ fшк / 2 ,

где uвозд - скорость движения воздуха в камере расстойного шкафа:

uвозд =0,4 м/c

fшк - площадь живого сечения камеры расстойного шкафа:

fшк = 1 м2,

тогда

Vцир = 0,4 ´ 1 / 2 = 0,2 м3/c.

Напор определяется путем аэродинамического расчета газового тракта циркулирующей среды по формуле:

Нцир = 1,2 ´ å DP,

где DP - основные местные сопротивления:

DP = x ´ uвозд2 ´ rвозд,

где x - коэффициент местного сопротивления;

r - плотность циркулирующего воздуха.

Расчет местных сопротивлений приведен в таблице 6.1

Таблица 6.1

Расчет местных сопротивлений

Номер участка

rвозд, кг/м3

uвозд, м/с

x

DP, Па

1

1.11

10

0.5

55.5

2

1.11

10

2.5

277.5

3

1.11

5

0.25

6.94

4

1.08

5

1.15

31.05

5

1.08

20

0.42

181.44

6

1.08

30

0.47

456.84

7

1.08

30

1.15

1117.8

8

1.08

30

1

972

9

1.11

0.4

2.3

0.41

Итого:




3099



Откуда:

Нцир = 1,2 ´ 3099 = 3719 Па.

Этот напор при объемной производительности

Vцир = 0,2 м3/c

может обеспечить центробежный вентилятор с приводным мотором мощностью:

Nэл = Vцир ´ Нцир / hцир ,

где hцир - КПД приводного двигателя циркуляционного вентилятора: hцир = 0,75.

Тогда: Nэл = 0,2 ´ 3719 / 0,7 = 1000 Вт.




Случайные файлы

Файл
92030.rtf
90376.rtf
116114.rtf
159416.rtf
185164.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.