Печатные платы (146122)

Посмотреть архив целиком

Введение


Термин "технология" происходит от двух греческих слов:  – искусство, мастерство, умение и  – наука. В производственных процессах он применяется для обозначения технологических процессов: операционных, маршрутных, полных, а также методов и способов их выполнения.

Интегральная схема (микросхема) ­–­­­ микроэлектронное изде­лие, выполняющее определенную функцию преобразования, об­работки сигнала, накапливания информации и имеющее высокую плотность электрически соединенных элементов (или элементов и компонентов), которые с точки зрения требований к испытани­ям, приемке, поставке и эксплуатации рассматриваются как еди­ное целое.

Важным показателем качества технологии и конструкции ИС является плотность упаковки элементов на кристалле – число элементов, приходящихся на единицу его площади. Кроме умень­шения размеров элементов для повышения плотности элементов на кристалле используется совмещение нескольких (обычно двух) функций некоторыми областями полупроводникового кристалла, а также трехмерные структуры, разделенные диэлектрическими про­слойками.

Конструктивно-технологическая классификация ИС отражает способ изготовления и получаемую при этом структуру. По этому критерию различают полупроводниковые и гибридные ИС. В полу­проводниковых ИС все элементы и межэлементные соединения из­готовлены в объеме и на поверхности полупроводника. В гибридных ИС на диэлектрической подложке изготовляются пленочные пассив­ные элементы (резисторы, конденсаторы) и устанавливаются наве­сные активные и пассивные компоненты. Промежуточным типом ИС являются совмещенные интегральные схемы, в которых транзисторы изготовля­ются в активном слое кремния, а пленочные резисторы и диоды ­– как и проводники на изолирующем слое двуокиси кремния.

По типу применяемых активных элементов (транзисторов) инте­гральные схемы делятся на ИС на биполярных транзисторах (бипо­лярных структурах) и ИС на МДП-транзисторах (МДП-структурах).

Данная работа посвящена описанию основных технологических операций производства интегральных микросхем:

  • выращивание монокристаллов;

  • изготовление пластин;

  • обработка поверхности пластин;

  • 4

  • 5

  • 6

  • 7

  • 8

  • 9

  • 10










1 Выращивание монокристаллов


Качество полупроводниковых приборов в значительной степени зависит от качества исходных полупроводниковых материалов. Поэтому создание полупроводниковой интегральной схемы начинается с изготовления монокристаллических слитков полупроводников. Особую проблему при этом представляет их очистка от примесей.

В настоящее время для промышленного изготовления большинства полупроводниковых микросхем применяют кремний. Это объясняется тем, что кремний по сравнению с также хорошо изученным и освоенным полупроводниковой промышленностью германием обладает рядом преимуществ. Так, кремний имеет большую ширину запрещенной зоны, что обеспечивает более широкий интервал рабочих температур, меньшие обратные токи переходов и меньшую их зависимость от температуры, а также позволяет изготавливать резисторы с большими значениями сопротивлений, слабо зависящими от тока утечки. Кремниевые переходы имеют большие пробивные напряжения, их пробой наступает при больших температурах. Кроме того, кремний является самым распространенным в природе элементом после кислорода. Содержание кремния в земной коре составляет по массе 27,7 %, что обеспечивает неограниченную возможность расширения его производства по сравнению с другими полупроводниками, относящимися к рассеянным элементам. Помимо дешевизны и недефицитности, кремний обладает существенно большим значением напряжения образования дислокаций, чем другие полупроводники. Это делает возможным выращивание бездислокационных монокристаллических слитков диаметром до 150 мм и более с массой более 100 кг. Известно несколько способов получения монокристаллических слитков, основанных на следующем принципе.

Растворимость большинства примесей гораздо больше в жидкой фазе, чем в твердой. Поэтому если постепенно охлаждать расплавленный полупроводник, то в затвердевшей части будет меньше примесей, чем в оставшейся жидкой части, словно примеси оттесняются в жидкую фазу. Отрезая же от полностью затвердевшего слитка ту часть, которая затвердела последней (и в которой, соответственно, сконцентрирована основная масса примесей) и повторяя операцию несколько раз, можно получить очень чистый материал. В рамках данной работы остановимся на двух методах: методе Чорхальского и зонной плавке.



1.1 Метод Чорхальского


Схема процесса изображена на рис 1. В расплавленное нагревателем вещество, которое на­ходится в тигле и имеет температуру, близкую к температуре плавления, опускают монокристаллическую затравку того же состава, что и расплав. Далее при­водится в действие механизм подъема и вращения затравки; при этом затравка сма­чивается расплавом и увлекает его вверх, вследствие чего расплав на затравке нара­стает в виде кристаллической фазы. Метод обеспечивает получение полупроводни­кового материала в форме совершенных монокристаллов с определенной кристал­лической ориентацией и минимальным числом дефектов. Нагреватель может быть резистивным, высокочастотным, электронно-лучевым.

При этом необходимо выдерживать должный температурный режим на поверхности соприкосновения кристалл-расплав, скорость вращения стержня и скорость вытягивания. Вращение стержня обуславливает перемешивание расплава, а также вывод дислокаций за пределы кристалла. Процесс производится в атмосфере инертных газов или водорода, которые также должны быть достаточно чистыми.


1.2 Метод зонной плавки (метод перекристаллизации)


На рис 2 показана схема безтигельной вертикальной зонной плавки. Достоинством метода является совмещение процесса глубокой очистки полу­проводника с последующим выращивани­ем его монокристалла. Отливка в форме стержня из предварительно очищенного и легированного поликристаллического полупроводника прикрепляется одним концом к затравочному кристаллу. Небольшая зона контакта на границе затравочного кристалла разогревается до температуры плавления полем высокой частоты или электронным пучком и медленно сдвигается к противоположному концу стержня. На затравочной стороне происходит отвердение кремния в виде монокристалла. Как уже было сказано, большинство примесей обладают хорошей растворимостью в жидкой фазе по сравнению с твердой. Поэтому по мере продвижения зона плавления все больше насыщается примесями, которые по завершении процесса концентрируются на конце слитка. Обычно про­цесс зонной плавки повторяют несколько раз, по окончании очистки загрязненный конец слитка отрезают.

Обычно изготовля­ют монокристаллы с равномерным распре­делением легирующей примеси (донорной или акцепторной). Легирование кремния или германия элементами осуществляется введением в расплав соответствующей примеси. Таким образом, слитки могут иметь электронную электропроводность (n-тип) или дырочную (р-тип). Максималь­ная длина может достигать 100, 150 см, а диаметр слитка до 150 мм и более.














2 Изготовление пластин


Полученные путем метода Чорхальского и метода зонной плавки массивные монокристаллические слитки непосредственно не используются. Их нарезают на множество тонких пластин, на основе которых уже изготавливаются отдельные интегральные микросхемы.

Механическая обработка полупроводников затруднена их высокими твердостью и хрупкостью. Использовать обычные методы механической обработки, применяемые в металлообрабатывающей промышленности, такие, например, как прокатка, штамповка, вырубка, нельзя. Для изготовления пластин из монокристаллических слитков применяют метод абразивной обработки, т.е. обработки более твердым, но менее хрупким, чем обрабатываемая поверхность, материалом, а также другие эффективные методы.

Перед началом резки слиток необходимо прочно закрепить на неподвижном основании, причем очень важно обеспечить точное расположение слитка относительно полотен или дисков с тем, чтобы пластины имели необходимую кристаллографическую ориентацию. Как правило, пластины нарезаются в плоскости <111> или <100>.

Наиболее распространенным способом крепления является закрепление с помощью различных наклеечных материалов, например, воска, канифоли, шеллака, глифталевой смазки, клея БФ, эпоксидных смол и крепежных мастик на их основе. Наклеечное вещество расплавляется и наносится на заготовки и крепежные приспособления и, застывая, скрепляет их в заданном положении.

После механической обработки материал нагревают, расплавляя наклеечный материал. Затем заготовки отмывают от наклеечного материала в специально подобранных растворителях. Для закрепления на держателе рабочего стола слиток сначала ориентированно приклеивают к специальной оправке торцом или цилиндрической поверхностью, а слитки большого диаметра ­­– одновременно торцевой и цилиндрической поверхностями (рис 4).

Держатель рабочего стола станка с помощью поворотной головки позволяет поворачивать слиток и устанавливать его относительно плоскости отрезного круга так, чтобы получить пластины с заданной ориентацией поверхности.

Обычно, резка слитка на пластины осуществляется либо с помощью комплекта тонких длинных стальных полотен, либо с помощью "алмазных дисков".


2.1 Резка стальными полотнами и дисками


На рис 3 показана схема резки стальными полотнами или наборами полотен с использованием абразивной суспензии. Этот метод применяется в лабораторных условиях для сквозного разделения пластин и подложек. Метод не обеспечивает высокой производительности и качества. Точность размеров кристаллов невысокая из-за неравномерности натяжения полотен в обойме, их вибрации, неравномерности износа. Абразивная суспензия загрязняет структуры.


Случайные файлы

Файл
58132.rtf
CBRR4049.DOC
14725.rtf
168077.rtf
151947.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.