Влияние температуры и коррозионно-активной среды на свойства металлов под напряжением при статических и циклических нагружениях (~1)

Посмотреть архив целиком

7



Исследование механических свойств материалов при низких температурах.

Для определения механических свойств при низких температурах используют те же стандартные методы , что и для исследований их при комнатной или повышенной температуре .

Главным узлом всякой установки для испытаний при низких температурах является ванна (криостат) , обеспечивающая необходимые условия. При испытаниях до температуры -77К ( -196С - температура жидкого азота ) применяются двухстенные ванны из красной меди , латуни или нержавеющей стали с войлочной изоляцией . При температурах ниже -77К криостат состоит в большинстве случаев из двух вставленных друг в друга стеклянных или металлических сосудов Дьюара , пространство между которыми заполнено жидким азотом .

Температура до 153К измеряется термометрами (спиртовыми , толуоловыми , пентановыми ) , ниже 153К - термопарами ( пластиновыми , медь-константовыми ) . Иногда температура помещённого в охлаждающую среду образца определяется по прекращению кипения зеркала жидкости , при этом считается , что он принял температуру хладагента .


Хладагент

Охлаждающая смесь

Темпе

ратура



°С

°К

Твёрдая углекислота

(сухой лёд )

Размельчённый сухой лёд со спиртом или

ацетоном

-40 ¸ -70

233 ¸ 203

Жидкий азот

Жидкий азот со спиртом или бензином

-100

173


Жидкий азот с петролеумным эфиром

- 120

153


Жидкий азот с изолентаном

-160

113

Жидкий кислород

-------

-183

90

Жидкий азот

-------

-196

77

Жидкий неон

-------

-246

27

Жидкий водород

-------

-253

20

Жидкий гелий

-------

-269

4

Жидкий гелий

( с откачкой )

-------

-271,5

1,6

Гелий-3 ( с откачкой )

-------

-272,8

0,3


Определение склонности сплавов к коррозионному растрескиванию при постоянных нагрузках .

При одновременном действии статических растягивающих напряжений ( внешних или внутренних ) и коррозионной среды многие сплавы подвержены коррозионному растрескиванию .

Характерными особенностями коррозионного растрескивания являются :

  1. хрупкий характер разрушения .

  2. направление трещин перпендикулярно растягивающим напряжениям ; при этом трещины имеют межкристаллитный или транскристаллитный , или , наконец , смешанный характер.

  3. зависимость времени до растягивания от величины растягивающих напряжений : с уменьшением растягивающих напряжений время до растрескивания увеличивается.

Коррозионному растрескиванию подвержены алюминиевые сплавы типа дуралюмина , сплавы систем Al-Mg , Al-Mg-Zn , Al-Mg-Cu , мягкие стали , коррозионные стали , медные сплавы , высокопрочные низколегированные стали , магниевые сплавы и др.

Большинство исследователей считают , что процесс коррозионного растрескивания имеет электрохимическую природу . Образование трещин при коррозии под напряжением сплавов связывается с возникновением гальванического элемента “концентратор напряжений (анод) - остальная поверхность (катод)” , с ускорением процесса распада пересыщенных твёрдых растворов , в результате чего возникают местные гальванические элементы и коррозионные трещины развиваются вследствие растворения вновь образующихся анодных участков , с механическим разрушением плёнок , избирательной коррозией пересыщенных твёрдых растворов , изменением внутренней энергии , абсорбции поверхностно-активных анионов и катионов среды и др.

Изучение кинетики развития трещины при коррозии под напряжением высокопрочных сталей методом электросопротивления показало , что процесс развития трещин складывается из трёх этапов . На первом этапе образуется коррозионная трещина . На втором этапе происходит скачкообразное развитие трещины , что свидетельствует о значительной роли механического фактора . Переход от первого этапа ко второму сопровождается значительным увеличением скорости развития трещины . На третьем этапе происходит лавинообразное развитие трещины .

При определении склонности сплавов к коррозионному растрескиванию растягивающие напряжения в образцах создаются двумя способами :

  1. путём приложения постоянной нагрузки .

  2. путём сообщения образцу постоянной деформации ( изгиб ) .

Полная характеристика склонности сплава к коррозионному растрескиванию может быть получена путём снятия кривых коррозионного растрескивания от величины растягивающих напряжений .


s, кг/мм(2) Рис. 1 Кривая коррозионного растрескивания стали 30ХГСНА в камере с распылённым 150 3 % NaCl .


100


50


0 25 50 75 t , сутки


Образование коррозионных трещин связано с неравномерным увеличением скорости коррозии сплава при приложении растягивающих напряжений . Если v1- cкорость коррозии в месте концентрации напряжений , v2 - скорость коррозии на остальной поверхности сплава , то образование коррозионной трещины будет происходить при напряжениях , когда v1 > v2 . Чем больше разность скоростей коррозии v1 - v2 , тем больше склонность сплава к коррозионному растрескиванию . Эти положения лежат в основе уравнения кривой коррозионного растрескивания .

(1) (s-sкр ) t = К , где

s - извне приложенное растягивающее напряжение ;

sкр - критическое напряжение , ниже которого не происходит коррозионного растрескивания ;

t- время до растрескивания ;

К - константа , характеризующая меру увеличения скорости распространения коррозионной трещины (1/t) при увеличении растягивающих напряжений . Чем больше К , тем в меньшей степени увеличивается скорость распространения трещины при увеличении растягивающих напряжений .

При извне приложенных напряжениях , равных или меньше sкр , коррозионного растрескивания не происходит . Величина sкр является основной количественной характеристикой сопротивления сплава коррозионному растрескиванию , чем выше sкр , тем выше сопротивление сплава коррозионному растрескиванию . Уравнению (1) удовлетворяют экспериментальные данные по коррозионному растрескиванию низколегированных высокопрочных конструкционных сталей в кислых , нейтральных и щелочных растворах и во влажной среде ; латуни в растворе аммиака ; низколегированных мягких сталей в растворе азотнокислого аммония , щелочи ; алюминиевого сплава В96 в 3 % растворе NaCl ; магниевого сплава МА2-1 в атмосферных условиях и МА3 в растворе NaCl + K2Cr2O7 ; ряда коррозионностойких сталей в 3 % растворе NaOH + 0,15% NaCl при повышенной температуре .

На рисунке (2) приведена кривая коррозионного растрескивания a - латуни в растворе аммиака ( плотность 0,94 ) при полном погружении :


s, кг/мм(2) Обращает на себя внимание тот факт , что для латуни в растворе аммиака 8 критическое напряжение меньше нуля

( -23,1 Мн/м(2) или 2,31 кг/мм(2) ) . Это 6 указывает на возможность её коррозионного растрескивания в 4 отсутствии извне приложенных 2 напряжений ( за счёт внутренних напряжений ) .

10 14 18 22 26 30 34 t , час


В указанных условиях для a - латуни кривая коррозионного растрескивания описывается уравнением :

( s + 2,31 )t= 115,6 кг/{мм(2)*ч};

На величину критического напряжения оказывают влияние :

  1. состав коррозионной среды ,

  2. химический и фазовый составы сплава ,

  3. термическая обработка ,

  4. состояние поверхностного слоя ,

  5. величина и характер внутренних напряжений .


Низколегированные высокопрочные стали типа 30ХГСНА обнаруживают коррозионное растрескивание в кислых , нейтральных , щелочных растворах и во влажной атмосфере . Между результатами испытаний на коррозии . Под напряжением высокопрочных сталей во влажной атмосфере ( атмосфера индустриального района , пресная , тропическая камера , и камера с распылением 3%-го раствора NaCl ) и в 20%-ном растворе серной кислоты с добавкой 30 г/л NaCl имеется определённая связь : чем больше критическое напряжение в указанном растворе , тем больше время до растрескивания напряжённых образцов во влажной атмосфере .

Рис. 3 Зависимость времени растрескивания высокопрочных сталей при напряжении 145 кг/мм(2) от величины sкр .

150 1-

  1. пресная камера ;

  2. индустриальная атмосфера ;

  3. тропическая камера ;

50 2 3- 4- 4. камера с распылением 3%-го NaCl ( 20% раствор H2SO4 c добавкой NaCl (30 г/л) ).

0 10 20 30 40 50 60 70 sкр (кг/мм(2))


Одним из важных факторов , определяющих сопротивление высокопрочных сталей коррозионному растрескиванию , является характер и величина внутренних напряжений в поверхностном слое . С увеличением внутренних растягивающих напряжений сопротивление стали коррозионному растрескиванию понижается . Создание сжимающих напряжений в поверхностном слое обкаткой , вибронаклёпом , обдувкой чугунным , кварцевым или корундовым песком повышает сопротивление стали коррозионному растрескиванию . Увеличение содержания углерода в a-Fe приводит к увеличению внутренних напряжений , в результате чего критическое напряжение стали понижается . Чем больше содержание легирующих элементов , затрудняющих диффузию углерода , тем выше температура отпуска , при которой наблюдается понижение сопротивления стали коррозионному растрескиванию . Так , если для стали 30ХГСНА понижение sкр наблюдается после отпуска при 250°С , то для стали 40ХН2СВА (ЭИ643) , содержащей больше легирующих элементов , тормозящих диффузию углерода - при 400°С .

При дальнейшем повышении температуры отпуска сопротивление стали коррозионному растрескиванию повышается .

При коррозии под напряжением с водородной деполяризацией может происходить наводораживание и связанное с этим ухудшение механических свойств стали . Высказываются соображения , что наблюдаемое в указанных условиях растрескивание стали происходит не вследствие увеличения скорости коррозии при положении растягивающих напряжений , а за счёт наводораживания ( водородное растрескивание ) . С другой стороны , если исходить из адсорбционной гипотезы влияния водорода на механические свойства стали и допустить , что сопротивление хрупкому разрушению стали линейно уменьшается с увеличением концентрации адсорбированного водорода , то зависимость времени до растрескивания от величины извне приложенных растягивающих напряжений можно описать уравнением :

(2) (s - А)Öt = Кн , или s = А + Кн (1/Öt) , где Кн - константа ;

А - сопротивление хрупкому разрушению стали при данной концентрации адсорбированного водорода ;


Экспериментальные данные по водородному растрескиванию при катодной поляризации в кислых и щелочных растворах (Рис. 4) удовлетворяют уравнению (2) . Зависимость времени до растрескивания наводороженной при кадмировании стали от величины растягивающих напряжений ( Рис. 5) также описывается уравнением (2) .


s , кг/мм(2) Рис. 4 s , кг/мм(2) Рис. 5

70 200

60

50 150

40

30

20 100

10

1/Öt ,

5 10 15 1/Öt , мин(-1/2) 0,02 0,04 0,06 0,08 0,1 мин(-1/2)


Кривая водородного растрескивания Кривая водородного растрескивания кадми-

стали 30ХГСНА (катодная поляриза- рованной стали ЭИ643 (надрезанные образ-

ция при 1А/дм(2) в 20%-ном H2SO4 + цы ) .

+ NaCl (30 г/л) ) .


Как видно из рисунка 5 , при изображении экспериментальных данных по водородному растрескивания кадмированной стали в координатах s, 1/Öt получаем прямую , что находится в соответствии с уравнением (2) .

Таким образом , различная функциональная зависимость t от s при водородном и коррозионном растрескивании , уравнения (1) и (2) позволяют различать эти явления .


Влияние среды на разрушения сплавов при циклических нагружениях .

Коррозионная усталость металла - процесс постепенного накопления повреждений , обусловленных одновременным воздействием переменных нагрузок и коррозионно-активной среды , которые приводят к уменьшению долговечности и снижению запаса циклической прочности .

Под воздействием коррозионных сред значительно снижается усталостная прочность сталей и сплавов . Величина снижения в большинстве случаев зависит от коррозионной стойкости материала . Следует отметить , что структурное состояние стали влияет на предел коррозионной усталости . Наиболее неблагоприятна структура низкого отпуска . Показатели коррозионной усталости сталей после закалки и отпуска ниже чем нормализованных и отожженных .

Наиболее низкое значение предела коррозионной усталости свойственно сталям (некоррозионностойким ) с мартенситной структурой . При sв , равном 170-200 кг/мм(2) , предел коррозионной усталости не превышает 15 кг/мм(2) (рис. 6) .

Повышение предела выносливости на воздухе не увеличивает выносливость в коррозионной среде . Предел коррозионной усталости коррозионностойких сталей обычно пропорционален пределу прочности при растяжении (см. рис. 6 ) до 130-140 кг/мм(2) .

Сплавы титана не чувствительны к воздействию коррозионных сред в условиях переменных нагрузок . Пассивность титана обусловлена наличием на его поверхности окисной плёнки, не имеющей пор. Существует мнение , что в окисных плёнках возникают остаточные напряжения сжатия . По некоторым данным , в растворах хлоридов при наличии острого концентратора типа трещины или острого надреза невосприимчивость титановых сплавов к воздействию среды исчезает . Долговечность образцов с трещиной в морской воде ниже долговечности на воздухе .

Предел выносливости алюминиевых и магниевых сплавов снижается от воздействия среды в 1,8 - 3 раза . Сопротивление усталости медных сплавов при испытании в пресной и морской воде снижается незначительно.

Для всех материалов последовательное действие напряжений и коррозионной среды менее опасно , чем одновременное .

Характерным для коррозионной устойчивости является появление на поверхности образцов гораздо большего числа трещин , чем у испытываемых на воздухе .


а) б)

s , кг/мм(2) s , кг/мм(2)

80 24

75 22

70

65 16


12

10


12 8

10(5) 10(6) 10(7) N 10(5) 10(6) 10(7) N


Рис. 6 . Кривые коррозионной усталости стали 30ХГСНА (а) и алюминиевого сплава Д1 (б) .

- испытания на воздухе ;

- испытания в водопроводной воде (полное погружение) ;


На кривой коррозионной усталости металлов отсутствует горизонтальный участок , и даже при очень большом числе циклов она остаётся наклонной к оси абсцисс , при этом угол наклона с увеличением базы может уменьшаться (рис. 7) .

Предел коррозионной усталости в значительной степени зависит от частоты нагружений , причём эта зависимость обнаруживается в области частот до 50 Гц . Это связанно с тем , что для большинства материалов время нахождения под воздействием среды вносит существенную поправку в получаемые результаты . Поэтому увеличение частоты нагружений с десятков циклов в минуту до десятков тысяч циклов в минуту вызывает повышение характеристик коррозионной усталости .


Случайные файлы

Файл
12817.rtf
5405-1.rtf
34102.rtf
184782.doc
47579.rtf