Автоматизация технологических процессов основных химических производств (Met1_ATPOXP)

Посмотреть архив целиком

80



Министерство образования Российской федерации

Санкт-Петербургский государственный технологический институт

(технический университет)



Кафедра автоматизации процессов химической промышленности




Г.В. Иванова









«Автоматизация технологических процессов

основных химических производств»





Методические материалы по курсу лекций

(в двух частях)




Часть 1.















2003г.

УДК 66-52:66(075)



Иванова Г.В. Автоматизация технологических процессов основных химических производств: Методическое пособие. Часть 1/ СПбГТИ(ТУ).-СПб., 2003.- 70с.





Методическое пособие предназначено для курса лекций по учебной дисциплине «Автоматизация технологических процессов основных химических производств», являющейся дисциплиной специализации 210201 – «Автоматизация технологических процессов химической промышленности» учебного плана по специальности 210200.

Пособие разработано в виде методических материалов, используемых при чтении лекций по дисциплине.





Часть 1 методического пособия включает в себя общую характеристику химико-технологических процессов (ХТП) как технологических объектов управления (ТОУ); методику анализа ХТП как ТОУ; физико-химические основы технологических процессов, технологические схемы рассматриваемых объектов управления, математические описания объектов управления, постановку задачи автоматизации, типовые схемы автоматизации, типовые решения автоматизации для гидромеханических и тепловых процессов.


















Утверждено на заседании методической комиссии факультета Информатики и управления 23 июня 2003г., протокол № 6.

  1. Материалы к лекции №1

Введение. Общие подходы к автоматизации ХТП.


Предметом изучения в данном курсе являются проблемы автоматизации основных химических производств.

Основные химические производства и составляющие их технологические процессы мы рассматриваем в данном курсе как объекты управления.


Химико-технологические объекты управления.


Определение ТОУ:

  • ТОУ - это совокупность совместно функционирующих технологического оборудования и реализованного на нем технологического процесса.

  • К ТОУ относят как отдельные технологические агрегаты и установки, реализующие локальный технологический процесс, так и целые производства (участки, цехи). Существуют «супер-ТОУ» - установки, включающие сотни технологических аппаратов (на нефтеперерабатывающих заводах).

Требования к ТОУ.

  • Оборудование ТОУ должно быть полностью механизировано и должно безотказно работать в межремонтный период.

  • ТОУ должен быть управляем, т.е. разделен на определенные зоны с возможностью воздействия на технологический режим в каждой из них изменением материальных и энергетических потоков.

  • Возможность воздействия на характеристики оборудования.

  • Возможность доступа обслуживающего персонала к местам установки датчиков, исполнительных механизмов, регулирующих органов.

  • Число возмущающих воздействий должно быть сведено к минимуму, что возможно в результате установки: ресиверов; емкостей с мешалками; теплообменников, уменьшающих амплитуду и частоту изменения таких параметров, как давление, состав, температура.


Типовая схема технологического производства

химических продуктов.








  • Типовая технологическая схема производства состоит из стадий подготовки сырья, химического синтеза, выделения и очистки целевых продуктов.

Классификация химико-технологических

процессов и производств как ТОУ.


  1. По тоннажу продукции и структуре ассортимента:


  • Крупнотоннажные ТОУ - ориентированные на продукцию конкретной ,фиксированной номенклатуры с объемами выпуска: сотни - десятки тысяч тонн.


  • Малотоннажные ТОУ - ориентированные на выпуск продукции разнообразной и быстро меняющейся номенклатуры, с объемами выпуска: граммы - десятки тонн.


  1. По характеру временного режима функционирования:


  • ТОУ периодического действия - ТОУ, в которых аппараты (ТО) работают в циклическом режиме, а технологические процессы (ТП) представляют собой последовательность технологических и организационных операций, имеющих конечную продолжительность. Термину «периодический процесс», принятому в химической технологии соответствует общесистемный термин « дискретный процесс».


  • ТОУ непрерывного действия - ТОУ, в которых аппараты работают непрерывно, на вход аппарата непрерывно подаются исходные реагенты, на выходе аппарата непрерывно отводятся выходные продукты а технологический процесс ведется в установившемся режиме.


  • ТОУ полунепрерывного действия - ТОУ, в которых аппараты функционируют непрерывно только в пределах интервала времени, необходимого для переработки конечной порции сырья или промежуточного продукта. В этих пределах в аппараты непрерывно подаются исходные реагенты, а с выходов - непрерывно отводятся продукты. Технологические процессы ведутся в установившемся режиме. Между интервалами времени работы аппараты находятся в режиме ожидания.


  1. По степени важности ТОУ в производстве.

  • Основные ТОУ - ТОУ для реализации основных технологических процессов производства. К основным ТОУ относят процессы и оборудование для реализации стадий подготовки сырья, химического синтеза, разделения и очистки целевых продуктов.


  • Вспомогательные ТОУ - к вспомогательным ТОУ относят процессы и оборудование для временного хранения исходных реагентов, промежуточных и конечных продуктов, осуществления транспортных операций.

  1. По информационной емкости ТОУ:

Степень сложности ТОУ характеризуется информационной сложностью объекта, т.е. числом технологических параметров, участвующих в управлении.

Таблица 1

Классификация ТОУ по информационной емкости.


Информационная

емкость объекта

Число параметров, участв. в управл.

Пример ТОУ

Минимальная

10 - 40

Насосная станция

Резиносмеситель

Малая

41 - 160

Массообменная

Колонна

Средняя

161 - 650

Установка первичной перегонки нефти

Повышенная

651 - 2500

Производство

Этилена

Высокая

2500 и выше

Производство

Технического

углерода


  1. По характеру параметров управления.

  • ТОУ с сосредоточенными параметрами - ТОУ, в которых регулируемые параметры (в данный момент времени, в разных точках аппарата), имеют одно значение соответствующего параметра.

  • ТОУ с распределенными параметрами - ТОУ, в которых значения параметров неодинаковы в различных точках объекта в данный момент времени. Большинство процессов химической технологии являются объектами с распределенными параметрами.

  • Пример: температура и концентрация по высоте ректификационной колонны.


  1. По типу технологического процесса.

  • Гидромеханические процессы - процессы, осуществляющие перенос количества движения.

  • Тепловые процессы - процессы переноса энергии в форме теплоты (теплопроводностью, конвекцией, излучением).

  • Массообменные процессы - процессы перемещения вещества в пространстве за счет разности концентраций.

  • Механические процессы - процессы переработки твердых материалов под действием механических сил (их измельчение и разделение по фракциям).

  • Химические процессы - процессы, характеризующие образование новых, отличающихся от исходных по химическому составу или строению, веществ при сохранении общего числа атомов и изотопного состава.

Методика анализа ХТП как ТОУ.


  1. Определение критерия эффективности ТОУ.

  • Для производств - это, как правило, экономические критерии максимизации прибыли или минимизации себестоимости продукции.

  • Для технологических процессов - это технологические критерии максимизации качества или максимизации выхода целевого продукта.

  1. Разработка математического описания процесса как объекта управления в статике и динамике.

  • При разработке математического описания сложных ХТП стремятся к созданию наиболее простых моделей.

  • Строят не полные и исчерпывающие мат. модели, а достаточные для решения задач управления.

  1. Математическое моделирование и исследование статических режимов ТОУ.

  • Основные методы создания мат. описания для целей управления - аналитические; статистические (регрессионные, методы группового учета аргументов); модели на основе нечетких методов.

  • Исследование статических характеристик ТОУ, на основании которого определяют:

  • Возможные диапазоны варьирования параметров при управлении;

  • Возможное число стационарных состояний процесса;

  • Анализ устойчивости стационарных состояний процесса;

  • Влияние основных режимных параметров на рабочие области ТОУ;

  • Исследование нелинейности коэффициентов усиления и возможности линеаризации статических характеристик и т.д.

  1. Построение информационной схемы ТОУ.

Информационная схема ТОУ - это схема, показывающая входные и выходные переменные ТОУ и их связи.

Построение информационной схемы возможно на основе мат. описания (при разработке новых технологий) или на основе информации по эксплуатации объекта (при модернизации системы управления).

  1. Анализ информационной схемы.

Выполняется анализ информационной схемы на предмет классификации входных и выходных воздействий на следующие группы:

  • Возможные возмущающие воздействия.

  • Возможные управляющие воздействия.

  • Наиболее целесообразные управляемые переменные.

Осуществляется выбор возможных каналов управления.

  1. Математическое описание динамики ТОУ.

  • Составляется мат. описание динамики объекта по возможным каналам управления.

  • Выполняется исследование динамики возможных каналов управления.

  • Выполняется выбор наиболее целесообразных каналов управления .

  • Составляется структурная схема системы управления.

  1. Выбор параметров контроля, сигнализации и защиты.

  1. Материалы к лекции №2

Автоматизация процесса перемешивания


Общая характеристика процессов перемешивания в жидких средах.


Перемешивание - гидромеханический процесс взаимного перемещения частиц в жидкой среде с целью их равномерного распределения во всем объеме под действием импульса, передаваемого среде мешалкой, струей жидкости или газа (Тябин Н.В.,с.95).


Цели перемешивания

  • Создание суспензий - обеспечение равномерного распределения твердых частиц в объеме жидкости;

  • Образование эмульсий, аэрация - равномерное распределение и дробление до заданных размеров частиц жидкости в жидкости или газа в жидкости;

  • Интенсификация нагревания или охлаждения орабатываемых масс;

  • Интенсификация массообмена в перемешиваемой системе (растворение, выщелачивание).


Основные схемы перемешивания.

Рис.1.

  • Механическое - перемешивание мешалками, вращающимися в аппарате с перемешиваемой средой.


  • Барботажное - перемешивание путем пропускания через жидкую среду потока воздуха или газа, раздробленного на мелкие пузырьки, которые, поднимаясь в слое жидкости под действием Архимедовой силы, интенсивно перемешивают жидкость.


  • Циркуляционное перемешивание - перемешивание, осуществляемое путем создания многократных циркуляционных потоков в аппарате с помощью насоса.


Объект управления


Объект управления - емкость с мешалкой, аппарат непрерывного действия, в котором смешиваются две жидкости А (с концентрацией целевого компонента Са) и Б (с концентрацией целевого компонента Сб) для получения гомогенизированного раствора с заданной концентрацией целевого компонента Ссм.



Схема объекта управления.


Рис.1.1



Показатель эффективности процесса - концентрация целевого компонента в гомогенизированном растворе (смеси) - Ссм.


Цель управления процессом - обеспечение заданной концентрации смеси при эффективном и интенсивном перемешивании.


Эффективность перемешивания обеспечивается выбором параметров аппарата, перемешивающего устройства, числа оборотов мешалки, обеспечивающих равномерность концентрации смеси в аппарате с заданной интенсивностью (т.е. за заданное время).

Однако в реальных условиях технологические объекты подвержены действию внешних и внутренних возмущений, которые приводят к отклонению технологических режимов работы от расчетных.


Задача разработки системы автоматизации обеспечить в условиях действия внешних и внутренних возмущений в процессе эффективное и интенсивное его функционирование с требуемыми характеристиками качества.


Теоретические аспекты процесса механического перемешивания.


  • При вращении лопасти мешалки в аппарате возникает вынужденное движение жидкости, которое описывается критериальным уравнением вида:

Euм = f(Reм , Г) (1),

где

  • модифицированный критерий Эйлера Euм :

2),

  • модифицированный критерий Рейнольдса Reм :



  • геометрический симплекс Г:

Г=dм / Dапп (4),

где dм - диаметр мешалки, м;

n - скорость вращения мешалки, об /с;

  • - плотность жидкости, кг/м^3;

Nм - мощность, потребляемая мешалкой, вт;

- динамическая вязкость, Па*с;

КN – критерий мощности.


Методика расчета конструктивно- технологических параметров процесса механического перемешивания.


  1. Выбирают тип мешалки, ее диаметр dм, размеры аппарата Daпп и Hапп.

  2. Определяют коэффициент С в зависимости от размеров аппарата и типа перемешивающего устройства.

  3. Определяют число оборотов мешалки: .

  4. Рассчитывают Reм по соотношению (3).

  5. По графику KN = f(Reм) находят KN.

  6. Рассчитывают Nм из выражения (2):

.

  1. Рассчитывают мощность Nдв, потребляемую приводом перемешивающего устройства:

где К - поправочный коэффициент, учитывающий конструктивные особенности аппарата и перемешивающего устройства; пер - к.п.д. передачи.


В реальной установке непрерывного действия:

т.е. необходимо обеспечить: и .

Материальный баланс по целевому компоненту.


Уравнение динамики:

(1).

Уравнение статики при :

(2)


На основании (1) и (2) можно принять:


. (3).


Материальный баланс по всему веществу.


Уравнение динамики:

(4).

Уравнение статики при :

(5).


На основании (4) и (5) можно принять:


. (6).



Информационная схема объекта.

Рис.4.1.


  • Управляемые переменные - Ссм и hсм .

  • Возможные контролируемые возмущения: ,

причем задано, что .

  • Возможные управляющие воздействия:.

  • Однако, в данном случае, Gсм определяется последующим технологическим процессом и поэтому не может использоваться в качестве регулирующего воздействия.

Анализ уравнения динамики

на основе материального баланса по целевому компоненту.


Уравнение динамики в нормализованном виде.

(1)


Начальные условия для вывода передаточной функции по каналу управления GACсм :

; ;

;

.


Уравнение статики:

(2)


Уравнение динамики в приращениях:

(после подстановки начальных условий в выражение (1), вычитания уравнения статики (2) и приведения подобных членов):

(3).


Уравнение динамики с безразмерными переменными:

(4).


Нормализованное уравнение динамики объекта во временной области без учета транспортного запаздывания:

(7).


Уравнение динамики по каналу управления во временной области с учетом транспортного запаздывания:

(8).


Передаточная функция объекта по каналу управления :

(10),

где:

;

(11),

где Vтруб - объем трубопровода от Р.О. до входа в аппарат.

Анализ уравнения динамики

на основе материального баланса по всему веществу.


Уравнение динамики:

(1)

Начальные условия для вывода передаточной функции по каналу управления GБhсм :


;

;

;

.


Уравнение статики:

(2).


Уравнение динамики в приращениях:

(после подстановки начальных условий в выражение (1), вычитания уравнения статики (2) и приведения подобных членов):

(3).


Уравнение динамики с безразмерными переменными:

(4).


Нормализованное уравнение динамики объекта во временной области

(7).


Уравнение динамики по каналу управления