Современные энергоактивные дома (144640)

Посмотреть архив целиком

Введение.

Тема реферата – «современные энергоактивные дома» актуальна т.к. приоритетными задачами строительной науки и практики в настоящее время стали задачи энергетической эффективности проектируемых архитектурных объектов  в силу очевидного довлеющего значения финансовых и общеэкономических факторов. Критическая острота энергетических проблем, необходимость экстренных мер в условиях недостатка средств предопределили относительно узкую - энергетическую направленность предпринимаемых действий. Это обстоятельство привело к некоторой автономности рассмотрения общеэкологических и энергетических аспектов строительной деятельности, выделению нескольких направлений в рамках альтернативного строительства, а в конечном счете - фрагментарности решения стоящих перед ним задач. С другой стороны, практика альтернативного строительства выражается сегодня объектами, преимущественно, небольшого масштаба, что обусловлено все еще экспериментальным характером данной деятельности и, следовательно, сопряженным с ней экономическим риском, а также отсутствием достаточных средств для реализации крупных градостроительных проектов, даже в экономически благополучных странах. Как следствие, проблематика, составляющая предмет исследований очевидного большинства научных организаций, производственных предприятий, а также печатных изданий, специализирующихся на вопросах строительства, свидетельствует о том, что в целом развитие архитектурно-строительного процесса определяет сегодня энергоэффективное строительство.



1.Пути повышения энергоэффективности объектов строительства.

Как показывают приведенные выше результаты прогнозирования энергетических перспектив развития общества, наиболее выигрышны сегодня два пути повышения энергоэффективности объектов строительства:

  1. экономией энергии (снижением энергопотребления и энергопотерь, в т.ч. утилизацией энергетически ценных отходов);

  2. привлечением возобновляемых природных источников энергии.

Мероприятия, соответствующие преимущественной ориентации на один из этих путей, имеют принципиальные отличия и позволяют выделить два класса энергоэффективных зданий - использующих и не использующих энергию природной среды.

Энергоэкономичные здания - не используют энергию природной среды (т.е. альтернативных источников) и обеспечивают снижение энергопотребления, большей частью, за счет усовершенствования систем их инженерного обеспечения (как наиболее "энергоемких" составляющих энергетического "каркаса" здания), конструктивных элементов, определяющих характер и интенсивность энергообмена с внешней средой (наружных ограждений, окон и т.п.), а также оптимизации архитектурных решений, направленной на сокращение энергопотерь (повышение компактности объемов, сокращение площади остекления, использование градостроительных приемов и архитектурных форм, нивелирующих отрицательные воздействия природно-антропогенных факторов внешней среды - ветра, солнца и т.п.).

Энергоактивные здания - ориентированы на эффективное использование энергетического потенциала внешней среды (природно-климатических факторов внешней среды) в целях частичного или полного (автономного) энергообеспечения посредством комплекса мероприятий, основанных на применении объемно-планировочных, ландшафтно-градостроительных, инженерно-технических, конструктивных средств, которые предполагают ориентированность пространств, архитектурных форм и технических систем на энергетические источники внешней среды (солнце, ветер, грунт и др.)



2. Преимущества энергоактивных зданий. Типы зданий по энергоактивности.

  Идея энергоактивных зданий явилась результатом поиска путей наиболее экономичных средств энергоснабжения объектов строительства и подразумевает достижение этой цели благодаря возможности производства энергии непосредственно на объекте, сулящей перспективу полного отказа от устройства дорогостоящих и ненадежных в эксплуатации внешних инженерных сетей (тепло-, электросетей, сетей горячего водоснабжения).

Отказ от устройства подводящих сетей, в свою очередь, означает исключение огромных потерь энергии, имеющих место при ее транспортировке. Суммарная величина этих и других возможных экономических "выигрышей", соотнесенная со стоимостью необходимых для их получения мероприятий и средств, определяет в итоге целесообразную степень энергоактивности проектируемого здания. Практика показывает, что в современных условиях далеко не всегда экономически оправдано полное замещение традиционных энергоносителей возобновляемыми; в большинстве случаев это объясняется невысоким к.п.д. имеющихся сегодня технологических средств утилизации энергии природной среды при довольно значительной их стоимости. Поэтому, наиболее целесообразными признаются разнообразные комбинированные схемы энергоснабжения, сочетающие использование традиционных и одного (или нескольких) видов альтернативных средств.

Таким образом, мощность и доступность имеющихся на месте строительства природных и других энергетических ресурсов, характер, производительность и стоимость средств их использования определяют целесообразную степень энергоактивности объекта. По этому признаку различают здания:

  • с малой энергоактивностью (замещение до 10% энергопоступлений);

  • средней энергоактивностью (замещение 10 - 60%);

  • высокой энергоактивностью (замещение более 60%);

  • энергетически автономные (замещение 100%);

  • с избыточной энергоактивностью (энергопоступления от природных источников превышают потребности здания и позволяют передавать излишки энергии другим потребителям).

Экспериментальное строительство 1970 - 1980-х годов показало, что экономически эффективными (по соотношению цена/ производительность), а следовательно, наиболее популярными сегодня и на видимую перспективу стали здания со средней энергоактивностью, в которых энергией возобновляемых природных источников обеспечивается от 40% до 60% общей потребности. (Н. П. Селиванов, А. И. Мелуа, С. В. Зоколей)



3. Использование возобновляемых источников энергии. Биоэнергоактивные здания.

К возобновляемым источникам энергии, многие из которых имеются практически повсеместно и в разных масштабах используются в современном строительстве, относятся:

  • энергия солнца (тепловая и световая составляющие солнечной радиации - основной первоисточник);

  • геотермальная (тепло верхних слоев земной коры и массивных поверхностных форм рельефа - скал, камней и т.п.), гидротермальная (тепло грунтовых вод, открытых водоемов, горячих подземных источников) и аэротермальная энергия (тепло атмосферного воздуха) - "производные" от солнечной энергии и энергии земного ядра;

  • кинетическая энергия воздушных потоков (энергия ветра - "вторая производ-ная" от солнечной энергии);

  • кинетическая энергия водных потоков (энергия водопадов и морских приливов - "производные" от гравитационных сил Земли и Луны);

  • энергия биомассы (растительности, органических отходов промышленных и сельскохозяйственных производств, а также жизнедеятельности животных и людей - результат биоконверсии солнечной энергии);

Например, ветровые энергетические ресурсы континентов, которые могут быть когда-либо использованы (с учетом неизбежных потерь), оцениваются сегодня в 40 ТВт, при этом современное энергопотребление человечества составляет около 10 Твт. Биомасса уже сегодня обеспечивает до 13% мирового производства энергии. Однако, природные энергетические ресурсы распределены весьма неравномерно, что выражается существенными отличиями природно-климатических условий, даже в границах одного климатического района. Поэтому, в каждом конкретном случае экономическая эффективность, т.е. предпочтительность использования того или иного природного источника энергии определяется местными условиями и критериями: наличием источника в районе строительства, его мощностью (величиной возможных энергопоступлений) и размерами затрат, необходимых для технического обеспечения эксплуатации источника в данном регионе. Системы энергоснабжения зданий и населенных мест, использующие энергию природной среды, часто оказываются экономически эффективнее традиционных не только вследствие значительного снижения потребления обычных дорогостоящих топливных ресурсов, но и как более дешевые в строительстве (монтаже и эксплуатации, например, в условиях вечномерзлых грунтов, слаборазвитой или недостаточно мощной имеющейся инженерной инфраструктуры (что особенно характерно для реконструируемых густонаселенных, а также вновь осваиваемых малонаселенных мест).



4. Достоинства альтернативной энергетики.

Одним из важнейших достоинств альтернативной энергетики является ее экологичность: процесс получения энергии от возобновляемых источников не сопровождается образованием загрязняющих окружающую среду отходов, не ведет к разрушению естественных ландшафтов, практически исключает опасные для биологических субстанций аварийные ситуации, т.е. никак не угрожает экологическому равновесию экосистем. Исключение составляет использование биомассы, предполагающее получение энергии посредством традиционного сжигания твердого биотоплива-концентрата и биогаза, в результате чего образуются углекислые соединения, способствующие усилению "парникового" эффекта в атмосфере; кроме того, использование биогаза, содержащего до 70% метана, требует усиленных мер обеспечения безопасности. Сумма этих обстоятельств ставит под сомнение экологическую целесообразность широкого использования биомассы в целях производства энергии Кроме биоэнергоактивных зданий, типологический спектр которых довольно ограничен, в зависимости от принятой ориентации на использование того или иного (или нескольких одновременно) природного источника энергии различают:


Случайные файлы

Файл
110547.rtf
165737.rtf
24925.rtf
11822.rtf
31754.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.