Отчет по лабораторным работам (LAB2)

Посмотреть архив целиком

Министерство образования Российской Федерации

Санкт-Петербургская государственная

инженерно-экономическая академия



Институт Информационных систем в экономике и управлении


Кафедра исследований операций в экономике



Отчет по лаборотной работе № 2

по теме «Анализ распределения»

по дисциплине «Статистика»






Выполнила:

Проверила:

Нименья И. Н.



Санкт-Петербург

2000


Максимальное число строк дисплея

Число cотовых телефонов , ед.

Число cотовых телефонов, % к итогу

Накопленная частота, %

1

2

4,762

4,762

2

2

4,762

9,524

3

12

28,571

38,095

4

8

19,048

57,143

5

12

28,571

85,714

6

3

7,143

92,857

7

3

7,143

100,000

Итого

42

100,000







Среднее xар= (1*2+2*2+3*12+4*8+5*12+6*3+7*3)/42=4,12 ед.

Средним значением максимального числа строк дисплея для данной совокупности является значение 4,12 .

Мода Мо=3 ед. и Mo=5 ед.

Наиболее распространенное значение числа строк дисплея для данной совокупности равно 3 и 5.

Медиана Ме=4 ед.

50% сотовых телефонов имеет кол-во строк дисплея менее 4, а остальные – более 4.

Размах вариации R=Xmax-Xmin

где Xmax - максимальное значение признака

Xmin - минимальное значение признака

R=7-1=6 ед.

Размах вариации показывает, что значение максимального числа строк дисплея варьирует между крайними значениями 7 и 1 ед.

Среднеквадратическое отклонение х=(Xi-Xср)2/n;

х=(2*(1-4,12)2+2*(2-4,12)2+12*(3-4,12)2+8*(4-4,12)2+12*(5-4,12)2+3*(6-4,12)2+3*(7-4,12)2)/42=

1,45 ед.

Дисперсия 2х=(Xi-Xср)2/n 2х=(1,45)2 =2,105 ед.2

Дисперсия, равная 2,105 ед.2, и среднеквадратическое отклонение, равное 1,45 ед. характеризуют меру рассеивания значений показателя относительно среднего арифметического 4,12 ед.

Коэффициент вариации: V= 1,45/4,12*100%=35%

Коэффициент вариации превышает 33 %, но не значительно, поэтому совокупность можно считать относительно однородной.

As= (2*(1-4,12)3+2*(2-4,12)3+12*(3-4,12)3+8*(4-4,12)3+12*(5-4,12)3+3*(6-4,12)3+3*(7-4,12)3)/

(42*3,04)=0,024

Т.к. показатель асимметрии < 0,25, то асимметрия незначительна и As близок к нулю, поэтому распределение можно считать симметричным. Рассчитаем показатель экцесса:

Ex= (2*(1-4,12)4+2*(2-4,12)4+12*(3-4,12)4+8*(4-4,12)4+12*(5-4,12)4+3*(6-4,12)4+3*(7-4,12)4)/

(42*4,43)=-0,31

Показатель экцесса< 0, что характеризует распределение как пологое.


Вес, гр.

Число cотовых телефонов , ед.

Число cотовых телефонов, % к итогу

Накопленная частота, %

78 - 102

8

19,048

19,048

103 - 127

6

14,286

33,333

128 - 152

17

40,476

73,810

153 - 177

4

9,524

83,333

178 - 202

5

11,905

95,238

203 - 226

2

4,762

100,000

Итого

42

100,000







Среднее

x=(78+83+87+95*3+98,5+99+103+110+112+117+125*2+128+129*2+130+133+135*3+140*2+141+142+145+146*2+150+151+165+167+170+175+185+186+195*3+210+220)/42=139,06 гр

Средним значением веса для данной совокупности является значение 139,06 гр .

Мода

Мо=Хо+Мо((nmo-nmo-1)/ ((nmo-nmo-1)+ (nmo-nmo+1))),

где Хо- нижняя граница модального интервала,

Мо- величина модального интервала,

nmo - частота модального интервала,

nmo-1 - частота интервала, предшествующего модальному,

nmo+1 - частота послемодального интервала.

Мо=128 +24*((17-6)/((17-6)+(17-4)))=139 гр

Наиболее распространенное значение веса для данной совокупности равно 139 гр.

Медиана

Me=xo+Me((1/2*N - F-1)/nМe),

где xо - нижняя граница медианного интервала,

Me- величина медианного интервала,

N – объем совокупности

F-1 - Накопленная частота интервала, предшествующего медианному

nМe - частота медианного интервала.

Ме=128 +24*((21-14)/17)= 137,88 гр

50% сотовых телефонов имеет вес менее 137,88 гр, а остальные – более 137,88 гр.

Размах вариации R=220-78=142 гр

Размах вариации показывает, что значение веса варьирует между крайними значениями 78 и 220 гр.

Среднеквадратическое отклонение х=((83-139,06)2+(78-139,06)2+(95-139,06)2+(103-139,06)2+(117-139,06)2+(151-139,06)2+2*(95-139,06)2+(87-139,06)2+2*(129-139,06)2+(112-139,06)2

+(110-139,06)2+….(167-139,06)2)/42=35,28 гр

Дисперсия 2х =1245,3 гр2

Дисперсия, равная 1245,3 гр2, и среднеквадратическое отклонение, равное 35,28 гр, характеризуют меру рассеивания значений показателя относительно среднего арифметического 139,06.

Коэффициент вариации: V= 35,28/139,06*100%=25,37%

Коэффициент вариации равен 25,37%, что не превышает 33 %, поэтому совокупность считается однородной.

Показатель асимметрии As=((83-139,06)3+(78-139,06)3+(95-139,06)3+(103-139,06)3+(117-139,06)3+(151-139,06)3+2*(95-139,06)3+(87-139,06)3+….(167-139,06)3)/(42*43945,78)=0,37

Т.к. показатель асимметрии As> 0, то имеется правосторонняя асимметрия.





Размеры, мм3

Число cотовых телефонов , ед.

Число cотовых телефонов, % к итогу

Накопленная частота, %

70500 - 95812

4

9,524

9,524

95813 - 121125

12

28,571

38,095

121126 - 146438

11

26,190

64,286

146439 - 171751

10

23,810

88,095

171752 - 197064

3

7,143

95,238

197065- 222377

2

4,762

100,000

Итого

42

100,000









Среднее x= (70500+70800+83460+95172+98064+98400+99450…..+223372)/42=135117,7 мм3

Средним значением размеров для данной совокупности яавляется значение 135117,7 мм3 .

Мо=95813+25312*((12-4)/((12-4)+(12-11)))=118312,6 мм3

Наиболее распространенное значение размеров для данной совокупности равно 118312,6 мм3.

Ме=121126 +25312*(21-16)/11=132631,5 мм3

50% сотовых телефонов имеет размеры менее 132631,5 мм3, а остальные – более 132631,5мм3.

Размах вариации R=222372-70500=151872 мм3

Размах вариации показывает, что значение размеров варьирует между крайними значениями 70500 и 222372 мм3.

Среднеквадратическое отклонение х=((70500-135117,7)2+(70800-135117,7)2+(83460-135117,7)2+(95172-135117,7)2+(98064-135117,7)2+(98400-135117,7)2+(99450-135117,7)2+…..

+(223372-135117,7)2)/42=35161,42 мм3

Дисперсия 2х =1236325701 мм6

Дисперсия, равная 1236325701мм6, и среднеквадратическое отклонение, равное 35161,42 мм3 характеризуют меру рассеивания значений размеров относительно среднего арифметического 135117,7 мм3 .

Коэффициент вариации: V= 35161,42/135117,7*100%=26%

Коэффициент вариации равен 26%, что не превышает 33 %, поэтому совокупность считается однородной.

As=((70500-135117,7)3+(70800-135117,7)3+(83460-135117,7)3+(95172-135117,7)3+(98064-135117,7)3+(98400-135117,7)3+(99450-135117,7)3+…..+(223372-135117,7)3)/

(42*43470971520782)=0,39

Т.к. Moар и As>0, то это свидетельствует о правосторонней асимметрии.







Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.