Основы комплексной автоматизации и проектирования ЭВМ (135780)

Посмотреть архив целиком


Лабораторные работы № 1- 4


По дисциплине:

«Автоматизация проектирования ЭВМ»



Содержание



  1. Лабораторная работа № 1

    1. Электрическая функциональная схем

    2. Матрица цепей схемы

    3. Вариант ручного разбиения

    4. Сравнительный анализ ручного и машинного разбиения по времени и качеству работы


  1. Лабораторная работа № 2

2.1 Мультиграф схемы

    1. Матрица связности мультиграфа

    2. Сравнительный анализ полученного разбиения с результатами ручного разбиения и с помощью последовательного алгоритма


  1. Лабораторная работа № 3

    1. Исходная схема, предназначенная для размещения

    2. Граф схемы

    3. Матрица связности графа схемы

    4. Матрица расстояний платы

    5. Вариант ручного размещения с определением суммарной длины связей

    6. Сравнительный анализ ручного и машинного размещения по времени и качеству размещения


  1. Лабораторная работа № 4

    1. Сравнительный анализ результатов работы алгоритма попарных перестановок с результатами ручного и последовательного размещения по времени и качеству

размещения


Литература


Приложения:

Листинг машинного решения лабораторных работ

Лабораторная работа №1

Лабораторная работа №2

Лабораторная работа №3

Лабораторная работа №4






1. Лабораторная работа № 1


Тема: Исследование алгоритма последовательного заполнения конструктивно-законченных частей. (Компоновка последовательным алгоритмом)

Цель работы:

  1. Ознакомление студента с методами автоматизированной компоновки на этапе конструкторского проектирования.

  2. Анализ преимущества автоматизации проектирования по сравнению с ручным способом.

  3. Закрепление практических навыков на персональном компьютере (ПЭВМ) в диалоговом режиме.



    1. Электрическая функциональная схема










Вых.

















Рис.1

Разместить схему на 2-х платах по 15 элементов.



На схеме:

Х – входы схемы;

Y – выходы схемы;

С – множество эквипотенциальных цепей.



1.2 Матрица цепей


Где:

X – множество элементов схемы;

Кмаксимальное количество контактов микросхемы;


Z =

Контакт

Элемент

Ki1

Ki2

Ki3

Ki4

Ki5

X1

4

5

0

0

0

X2

6

7

0

0

0

X3

5

7

9

0

0

X4

5

6

10

0

0

X5

7

4

11

0

0

X6

4

6

12

0

0

X7

9

13

0

0

0

X8

10

14

0

0

0

X9

11

15

0

0

0

X10

12

16

0

0

0

X11

1

13

17

0

0

X12

2

14

18

0

0

X13

3

15

19

0

0

X14

16

8

20

0

0

X15

17

18

19

20

21


Таб.1

Матрица цепей, описывающая схему (Рис.1)


Дано:

N = 15 (элементов)

K = 5 (контактов)

P = 2 (плат)

n max = 8 (элементов)



Где:

N – число элементов схемы;

K – максимальное число выводов элементов;

P – число плат, на которых нужно разместить схему;

n maxмаксимальное количество элементов, размещаемых на каждой плате.

1.3 Вариант ручного разбиения

Размещение элементов


На плате 1:

1

2

3

4

5

6

7


На плате 2:

8

9

10

14

12

13

14

15


Связность: 4


Среднее время выполнения: 0 часов 0 минут 40 сек.







1.4 Сравнительный анализ ручного и машинного способа

разбиения по времени работы и качеству компоновки


В результате ручного разбиения мы получили более оптимальный результат, и затратили на это намного меньше времени:


Машинным способом: 0 ч. 10мин. 30 сек.

Ручным способом: 0 ч. 0 мин. 40 сек.


Но при увеличении элементов на схеме и количества плат машинный способ наиболее удобен.


2. Лабораторная работа № 2


Тема: Исследование алгоритма попарных перестановок конструктивных

элементов между ТЭЗами. Компоновка итерационным алгоритмом.

Цель работы:

  1. Ознакомление студента с методами автоматизированной компоновки на этапе конструкторского проектирования с помощью итерационного алгоритма.

  2. Анализ преимущества автоматизации проектирования по сравнению с ручным способом.

  3. Закрепление практических навыков на персональном компьютере (ПЭВМ) в диалоговом режиме.


2.1 Мультиграф схемы























Дано:

N = 15 (элементов)

P = 2 (плат)

n max = 8 (элементов)



Где:

N – число элементов схемы;

P – число плат, на которых нужно разместить схему;

n maxмаксимальное количество элементов, размещаемых на каждой плате.


    1. Матрица связности мультиграфа



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

0

0

1

1

1

1

0

0

0

0

0

0

0

0

0

2

0

0

1

1

1

1

0

0

0

0

0

0

0

0

0

3

1

1

0

1

1

1

1

0

0

0

0

0

0

0

0

4

1

1

1

0

1

1

0

1

0

0

0

0

0

0

0

5

1

1

1

1

0

1

0

0

1

0

0

0

0

0

0

6

1

1

1

1

1

0

0

0

0

1

0

0

0

0

0

7

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

8

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

9

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

10

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

11

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

12

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

13

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

14

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

15

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0


Таб.2

Случайные файлы

Файл
doclad.doc
17828-1.rtf
17707.rtf
147066.rtf
117263.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.