Расчёт супергетеродинного приёмника ДВ, СВ волн (135769)

Посмотреть архив целиком

1.1 Введение


Изобретение радиосвязи великим русским ученым А.С. Поповым в 1895 г. – одно из величайших открытий науки и техники.

В 1864 г. английский физик Максвелл теоретически доказал существование электромагнитных волн, предсказанное еще Фарадеем, а в 1888 г. немецкий ученый Герц экспериментально доказал существование этих волн. Опыт Герца состоял в том, что с помощью катушки Румкорфа в пространстве создавались слабые электромагнитные волны, воспринимаемые тут же расположенным «резонатором». Слабая искра в резонаторе свидетельствовала о приеме высокочастотных электромагнитных колебаний. Казалось, что принцип связи без проводов уже найден, стоит лишь увеличить мощность передающего устройства. Именно по этому пути и шли ученые, которые хотели использовать волны Герца для связи без проводов. Однако это не привело к существенным результатам.

Другим путем пошел А. С. Попов, обратив основное внимание на отыскание возможностей приема очень слабых сигналов, т.е. на повышение чувствительности приемника.

7 мая 1895 г. А.С. Попов на заседании Физического отделения Русского физико-химического общества в Петербурге демонстрировал прибор, принимающий электромагнитные колебания. Этот прибор был первым в мире радиоприемным устройством; к нему было добавлено регистрирующее устройство и создан грозоотметчик.

Радиоприемное устройство Попова отличалось от приемных устройств предшествующих исследователей (Герца, Лоджа) двумя особенностями: наличием антенны и использованием усиления принятого сигнала.

В дальнейшем Попов значительно повысил чувствительность своего приемника, введя в схему своего радиоприемника колебательный контур, настраиваемый в резонанс с частотой электромагнитных колебаний.

В 1904 г. английский ученый Флеминг изобрел двухэлектродную лампу (диод), а в 1906 г. Ли де Форест ввел в нее третий электрод – управляющую сетку. Электронная лампа вызвала большие изменения в технике радиосвязи. Дальнейшее развитие техники радиоприема было связано с усовершенствованием электронных ламп. С 1918 г. стали применять так называемую регенеративную схему, которая позволила значительно повысить чувствительность и избирательность радиоприемников.

В 1918 г. Армстронг получил патент на схему супергетеродинного приемника. В начале 30-х годов были созданы многосеточные лампы, в связи, с чем супергетеродинные схемы становятся основными для большинства выпускаемых радиоприемников. В 60-е годы началось освоение инфракрасного и оптического диапазонов волн. Развитие радиолокационной техники привело к разработке новых методов усиления слабых электрических колебаний. Были созданы малошумящие усилители СВЧ с использованием ламп бегущей волны, молекулярные и параметрические усилители, усилители на туннельных диодах. Развитие полупроводниковой электроники привело к новому направлению в разработке методов и устройств приема и обработки информации – микроэлектронике. Успехи в развитии современной микроэлектроники позволяют значительно улучшить основные параметры радиоприемников. Замена целых функциональных узлов и блоков радиоприемника интегральными микросхемами, замена конденсаторов переменной емкости или варикапными матрицами позволяют использовать новые методы конструирования радиоприемников, как-то: синтез частот, бесшумная настройка, автоматическая регулировка полосы пропускания при изменении уровня входных сигналов, программное управление приемником и т.д.

Современная технология производства радиоэлектронной аппаратуры, принципиально новые схемные решения, реализация которых стала возможной на ее основе, так как количество элементов и сложность схем при использовании интегральных микросхем перестали быть ограничивающими факторами, позволили резко повысить качественные показатели всех видов радиоприемных устройств.

Современные радиоприемные устройства обеспечивают надежную связь с космическими станциями, работают в системах спутниковой связи, в многотысячекилометровых радиорелейных линиях. Судовождение, авиация немыслимы сегодня без совершенных радиолокационных станций.

Современная научно-техническая революция находит свое яркое выражение в бурном развитии радиотехники, в частности техники радиоприемных устройств.





















1.2 Эскизный расчет приемника

Вариант№20

Параметры приемника:

  1. Диапазон принимаемых частот fн÷fв, кГц ………….........................ДВ, СВ.

  2. Чувствительность на магнитную антенну Еа, мВ/м …………..………… 3

  3. Селективность по соседнему каналу δск, дБ……………………………….40

  4. Селективность по зеркальному каналу δзк, дБ ……………………………30

  5. Выходная мощность Pвых, Вт .……………………………………………0,15

  6. Спектр воспроизводимых частот Fн÷Fв, Гц………………………..300÷3500

  7. Неравномерность частотной характеристики М, дБ ……………………..12

  8. Коэффициент нелинейных искажений Кг, %.………………………………8

  9. Действие АРУ на входе ………………………………………………….25дБ

на выходе………………………………………………….6дБ

  1. Вид питания – батарея 6В

  2. Рассчитать принципиальную схему каскадов АД и УННЧ

  3. Рассчитать частотную характеристику УНЧ


1.2.1 Определение и выбор типа радиоприемного устройства


Для выбора типа радиоприемного устройства воспользуемся ГОСТ 5651-89. Аппараты по электрическим и электроакустическим параметрам подразделяют на три группы сложности: высшую (0); первую (1) и вторую (2). Брем таблицу с трактом АМ – это тракт приема программ радиовещательных станций в диапазонах ДВ, СВ и КВ, а диапазон нашего приемника ДВ, СВ. Но мы не берем высшую группу сложности, так как наш радиоприемник не совпадает с ней ни по одному параметру.


Тракт АМ

Табл. №1

Наименование параметра

Норма для аппаратов группы сложности

1

2

  1. Чувствительность, ограниченная шумами, при отношении сигнал/шум не менее 20дБ:

по напряжению со входа для внешней антенны, мкВ не хуже в диапазонах:

ДВ

СВ

по напряженности поля, мВ/м, не хуже, в диапазонах:

ДВ

СВ

  1. Диапазон воспроизводимых частот звукового давления всего тракта при неравномерности частотной характеристики звукового давления 14 дБ в диапазоне СВ и 18 дБ в диапазоне ДВ, Гц, не уже для стационарных аппаратов . для переносных аппаратов

  2. Общие гармонические искажения всего тракта по электрическому напряжению на частоте модуляции 1000 Гц, при М=0,8; Рвых = Рвых ном (Uвых = Uвых ном), %, не более

  3. Отношение сигнал/фон с антенного входа для аппаратов с питанием от сети переменного тока, дБ, не менее





100

100



1,5!

0,7





50-6300

125-5600




4



46





По ТУ !

По ТУ!



По ТУ

По ТУ !





125-3550

315-3150!




5



40


Наименование параметра

Норма для аппаратов группы сложности

1

2

5. Действие автоматической регулировки усиления:

изменение уровня сигнала на входе, дБ

изменение уровня сигнала на выходе, дБ, не более

6. Односигнальная избирательность по соседнему каналу при расстройке ±9 кГц, дБ, не менее

7. Односигнальная избирательность по зеркальному каналу, дБ, не менее, в диапазонах:

ДВ (на частотах 200 кГц)

СВ (на частотах 1000 кГц, по ТУ)


46

10


40



50(40)**

36


30!

10!


По ТУ!



40(26)**

34(20)**

* Для аппаратов объемов менее 0,001 м3 диапазон устанавливают в ТУ.

** Для аппаратов объемом менее 0,001 м3.


При сравнении параметров приведенных в таблице с параметрами нашего приемника, во втором классе приемника (2) было найдено 7 совпадений (отмеченных знаком !), тогда как в первом классе (1) – лишь 1 совпадения (отмеченных знаком !). В первом случае совпали чувствительность магнитной антенны, действие автоматической регулировки усиления, односигнальная избирательность по соседнему каналу и диапазон воспроизводимых частот. Во втором случае совпала лишь чувствительность магнитной антенны.






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.