Цифровая обработка сигнала (Digital Signal processing) (Slonike)

Посмотреть архив целиком

Устройства, которые позволяют вводить сигналы в ЭВМ, называются АЦП.

Любой сигнал содержит шумы, которые искажают последний сигнал, тем самым, мешая обработке сигнала.

Метод обработки сигналов.


Существует 3 способа обработки сигналов:

1 способ – полосовые фильтры.

2 способ – линейные предсказания.

3 способ – дискретное преобразование Фурье.


Применение методов обработки сигналов.


  1. Выделение наиболее информативных признаков из имеющегося сигнала.

  2. Создание векадерной техники.

  3. Создание речевых систем для автоматической распознавания речи.

  4. Проблема синтеза речи или создание искусственного голоса.

Системы распознавания речи.


Классификация:

Это такие устройства, которые позволяют отредактировать устный сигнал в команды

Классы систем:

  1. автоматическое распознавание изолированных слов (когда пользователь пословно производит команды).

  2. Автоматическое распознавание слитной речи (устройства, которые в состоянии отделить слова).

  3. Система понимания речи (системы, которые не требуют отделять слова, а которые должны их понимать и дополнять).

  4. Системы синтеза речи или сигналы создания искусственного голоса.

А) форматный синтез или синтез по правилам (когда выходной сигнал получается при сложной математической обработки).

Б) компилятивный метод (этот метод: суть: предварительное изучение и выделение ярких моментов).

Параметры распознавания систем:

  1. По объему словаря.

  2. Оценить по точности распознавания речи, которая измеряется в процентах (должно превышать 95%).

  3. Система автоматического распознавания речи характеризуется по способу обработки входного сообщения.

  4. Система распознавания диктора.


Основные информативные признаки речевого сигнала.


Любой речевой сигнал характеризуется следующими признаками, которые можно использовать для того, чтобы синтезировать исходный сигнал.

Признаки:

  1. Энергия сигнала








10м

Е1 Е2 Е3


N – количество отчетов

2) Основная частота.

- определяет длину речевого тракта

3) Форманты



Е







F0 F1 F2 F3 F4


- определяет концентрацию энергии речевого сигнала по частоте и характеризует гласные звуки. Они используются для классификации гласных звуков.

- характеризует свойства диктора.

4) Мгновенная частота.

Это количество перехода сигнала через нуль.

Этот признак используется для классификации шумных звуков и гласных.

5) Мгновенная амплитуда сигнала.

Аналогичные признаки выделяются из речевого сигнала после его фильтрования по полосовым фильтрам. В результате получается компактные речевые признаки входного сигнала. Объем памяти получается необходимым намного меньше. Основной тон - это очень полезный признак и используется для динамической сегментации входного сигнала, который приводит к более точной обработке входного сигнала.

Первая и вторая форманта - используются для классификации и распознавания гласных звуков.

Признак - используется для определения взрывных звуков (т, с, ш и т.д.)


Структура распознавания входных сообщений.






Модель сигнала Гипотеза фонем Предсказатель букв Предсказатель слов

Предсказатель предложений, фраз



Методы распознавания, используемые в системах обработки речевых сигналов.

  1. Статистические методы.

  2. Лингвистические методы (структурирование).

  3. Нейронные сети.


Тема: Типы сигналов и связи между сигналами различных типов.


  1. Классификация сигналов.

  2. Связи между аналоговыми и дискретными сигналами.

  3. Связь между дискретными и цифровыми сигналами.

  4. Дискретная Дельта – Функция.

m=3 – номер отсчета

T 2T 3T




Используя дискретную - функцию, любую последовательность X(nT) можно представить в следующей форме:



Тема: Z–преобразования и преобразования Фурье.


  1. Прямое Z–преобразование.

  2. Основные свойства прямого Z–преобразования.

  3. Обратное Z–преобразование.

  4. Преобразование Фурье.


1. Прямое Z–преобразование X(Z) последовательность X(nT) определяется следующей формулой:

Z–преобразование имеет смысл только в том случае, если функция X(nT) сходится.


Пример:

В теории обработки цифровых сигналов могут быть использованы:

1

(-1)n

n

1/(1-Z-1)

1/(1+Z-1)

Z-1/(1-Z-1)2







Вот эти Z–преобразования имеют различные формы записи и могут использоваться для описания передаточных функций цифровых фильтров, которые используются для обработки цифровых сигналов.

X(nT) X(Z)


Z–преобразование используют для того, чтобы проектировать цифровые фильтры.


2. Основные свойства прямого Z–преобразование.

1. Свойство линейности.

Предположим, имеем следующую последовательность дискретного преобразования:

X1(nT) X2(nT) X3(nT)

X1(Z) X2(Z) X3(Z)

Имеем: С1=const и C2=const, тогда преобразование является линейным если:


X3(Z) = C1X1 (Z) +C2X2 (Z) - линейное

X3(nT) = C1X1(nT) +C2X2(nT) преобразование


2. Свойства сдвига.

Утверждает, что если

X2(nT) = X1((n-m)T), тогда

X2(Z) = X1(-mT)+ X1((-m+1)T)Z-1+…+X1(-T)Z-(m-1)+Z-mX1(Z)


X2(Z) = Z-mX1(Z)

X3(Z) =

Где с – замкнутый контур в комплексной v плоскости, которая обхватывает все особенности X1 u X.

3. Обратное Z–преобразование.

Оно определяется следующей функцией: