Фотодиод в оптоэлектронике (FOTODIOD)

Посмотреть архив целиком

Министерство общего и профессионального образования

Российской Федерации




САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. Н.Г.ЧЕРНЫШЕВСКОГО




Кафедра физики

Полупроводников




ФОТОДИОД В

ОПТОЭЛЕКТРОНИКЕ





Курсовая работа

Студента 1 курса физического факультета

Машкова Дмитрия Александровича







Научный руководитель

профессор

________ Роках А.Г.

/подпись/


Зав. кафедрой

профессор, доктор

_________ Б.Н.Климов

/подпись/







Саратов – 1999г.


План работы









1. Введение и постановка задачи

2. Физические основы внутреннего фотоэффекта

3. Принцип действия фотодиода

4. Практическая часть (исследование характеристик фотодиода)

5. Применение фотодиода в оптоэлектронике

6. Заключение

7. Литература




































1.ВВЕДЕНИЕ И ПОСТАНОВКА ЗАДАЧИ


В наши дни прогресс в различных областях науки и техники немыслим без приборов оптической электроники. Оптическая электроника уже давно играет ведущую роль в жизни человека. А с каждым годом ее внедрение во все сферы человеческой деятельности становится все интенсивнее. И этому есть свои причины. Устройства оптоэлектроники имеют ряд отличий от других устройств. Можно выделить следующие их достоинства.

а) Высокая информационная емкость оптического канала, связанная с тем, что частота световых колебаний (около 1015 Гц) в 103-104 раз выше, чем в освоенном радиотехническом диапазоне. Малое значение длины волны световых колебаний обеспечивает высокую достижимую плотность записи информации в оптических запоминающих устройствах (до 108 бит/см2).

б) Острая направленность светового излучения, обусловленная тем, что угловая расходимость луча пропорциональна длине волны и может быть меньше одной минуты. Это позволяет концентрированно и с малыми потерями передавать электромагнитную энергию в заданную область пространства. В малогабаритных электронных устройствах лазерный луч может быть направлен на фоточувствительные площадки микронных размеров.

в) Возможность двойной – временной и пространственной модуляции светового луча. Минимальная элементарная площадка в плоскости, перпендикулярной направлению распространения, которая может быть выделена для независимой модуляции части луча близка к 2(108 см2). Это позволяет производить параллельную обработку информацию, что очень важно при создании высокопроизводительных комплексов.

г) Так как источник и приемник в оптоэлектронике не связаны друг с другом электрически, а связь между ними осуществляется только посредством светового луча (электрически нейтральных фотонов), они не влияют друг на друга. И поэтому в оптоэлектронном приборе поток информации передается лишь в одном направлении – от источника к приемнику. Каналы, по которым распространяется оптическое излучение, не воздействуют друг на друга и практически не чувствительны к электромагнитным помехам (отсюда и высокая помехозащищенность).

д) возможность непосредственного оперирования со зрительно воспринимаемыми образами: фотосчитывание, визуализация (например, на жидких кристаллах).

Любое оптоэлектронное устройство содержит фотоприемный блок. И в большинстве современных оптоэлектронных устройств фотодиод представляет основу фотоприемника.

Фотодиоды обладают наилучшим сочетанием фотоэлектрических параметров, основных с точки зрения использования в оптоэлектронике: высокие значения чувствительности и быстродействия, малые значения паразитивных параметров (например, ток утечки). Простота их устройства позволяет достигнуть физического и конструкционного оптимума и обеспечить наиболее полное использование падающего света.

В сопоставлении с другими, более сложными фотоприемниками, они обладают наибольшей стабильностью температурных характеристик и лучшими эксплуатационными свойствами.

Основной недостаток, на который обычно указывают, - отсутствие усиления. Но он достаточно условен. Почти в каждом оптоэлектронном устройстве фотоприемник работает на ту или иную согласующую электронную схему. И введение усилительного каскада в нее значительно проще и целесообразнее, чем придание фотоприемнику несвойственных ему функций усиления.

Ну а целью моей работы является исследование характеристик фотодиода: вольт-амперной характеристики, коэффициента полезного действия.


2.ФИЗИЧЕСКИЕ ОСНОВЫ ВНУТРЕННЕГО ФОТОЭФФЕКТА


Падающий на вещество поток света может испытывать отражение, поглощение или проходить насквозь.

Если поглощенный свет приводит к такому увеличению энергии электронов, что они покидают объем, занимаемый веществом, говорят о внешнем фотоэффекте. Если при освещении изменяется энергетическое состояние носителей заряда внутри твердого тела, то мы имеем дело с внутренним фотоэффектом. При этом добавочная проводимость, обусловленная носителями заряда, созданными излучением, называется фотопроводимостью.

При внутреннем фотоэффекте первичным актом является поглощение фотона. Поэтому процесс образования свободных носителей заряда под воздействием излучения будет проходить по-разному в зависимости от особенностей процесса поглощения света. К тому же поглощенный свет не всегда вызывает фотоэффект.

Существует несколько видов поглощения света.

а) собственное поглощение.

Этот вид поглощения имеет место в том случае, когда оптическое возбуждение электронов происходит из валентной зоны в зону проводимости. Для полупроводника с прямыми долинами при вертикальных переходах энергия фотона h должна быть не меньше ширины запрещенной зоны, то есть


h Eg.


Для сильно легированного полупроводника n-типа когда уровень Ферми расположен выше края зоны проводимости на величину n, нижняя граница фотопроводимости будет соответствовать

h = Eg + n .


В сильно легированном полупроводнике p-типа уровень Ферми лежит на величину p ниже края валентной зоны, поэтому


h = Eg + p.


При больших энергиях фотонов поглощение в фундаментальной области ведет к увеличению фотопроводимости за счет роста коэффициента поглощения . В случае собственного поглощения достигает наибольшей величины – (106 см-1). Вместе с тем такое поглощение увеличивает концентрацию носителей заряда вблизи поверхности полупроводника или диэлектрика, которые имеют меньшее время жизни, чем носители заряда в объеме.

б) примесное поглощение.

Такое поглощение при наличии в запрещенной зоне полупроводника локальных уровней примеси может вызвать переходы электронов между уровнями примеси и зонами. Фотопроводимость, обусловленная такими переходами, называется примесной фотопроводимостью. Для реализации таких переходов нужна меньшая энергия кванта, чем для реализации переходов из валентной зоны в зону проводимости. Поэтому примесное поглощение имеет место при больших длинах волн падающего света.

в) экситонное поглощение.

При экситонном поглощении света имеет место создание связанной пары электрон-дырка, которая является электрически нейтральным образованием. Поэтому поглощение света, связанное с образованием экситонов, первоначально не ведет к возникновению свободных носителей заряда. Однако в реальных кристаллических структурах экситоны имеют значительно большую вероятность диссоциировать безызлучательно (с образованием электронов и дырок), чем рекомбинировать с испусканием кванта света. Таким образом, образование экситонов в конечном итоге ведет к возникновению свободных носителей заряда, а следовательно, и фототока. Экситонное поглощение, характеризующееся узкими полосами поглощения, определяет и узкие полосы фототока. При этом спектр фототока в области экситонного поглощения будет зависеть от состояния поверхности. Состояние поверхности полупроводника можно легко изменить путем воздействия на нее (механическое, химическое и т.д.). Таким образом можно изменить характер наблюдаемого спектра фототока, обусловленного экситонным поглощением.

г) поглощение свободными носителями заряда.

Поглощение света свободными носителями заряда сопровождается увеличением их энергии. При этом, в отличие от рассмотренных выше трех видов поглощения, число свободных носителей не изменяется. Но вместе с тем изменяется подвижность носителей заряда.

д) поглощение кристаллической решеткой.

В результате такого поглощения увеличивается амплитуда колебаний узлов решетки. В этом случае не изменяется ни концентрация носителей заряда, ни их подвижность. Поэтому поглощение света кристаллической решеткой не является фотоактивным.

Поглощение света свободными носителями заряда и кристаллической решеткой не могут непосредственно вызвать изменение концентрации носителей заряда. Однако возрастание концентрации носителей заряда в этих случаях может происходить в результате вторичных эффектов, когда поглощение света значительно увеличивает кинетическую энергию свободных носителей заряда или увеличивает концентрацию фононов, которые затем отдают свою энергию на возбуждение носителей заряда.



3.ПРИНЦИП ДЕЙСТВИЯ ФОТОДИОДА



Полупроводниковый фотодиод – это полупроводниковый диод, обратный ток которого зависит от освещенности.

Обычно в качестве фотодиода используют полупроводниковые диоды с p-n переходом, который смещен в обратном направлении внешним источником питания.

При поглощении квантов света в p-n переходе или в прилегающих к нему областях образуются новые носители заряда. Неосновные носители заряда, возникшие в областях, прилегающих к p-n переходу на расстоянии, не превышающей диффузионной длины, диффундируют в p-n переход и проходят через него под действием электрического поля. То есть обратный ток при освещении возрастает. Поглощение квантов непосредственно в p-n переходе приводит к аналогичным результатам. Величина, на которую возрастает обратный ток, называется фототоком.


Случайные файлы

Файл
85997.rtf
49400.rtf
14867-1.rtf
2516.rtf
17496.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.