Тепло и массообмен в РЭА с перфорированным корпусом (TMO)

Посмотреть архив целиком

СОДЕРЖАНИЕ

Введение .................................................…………………………

1. Анализ исходных данных .................................. ……………..

2. Расчет тепловых режимов аппарата ......................…………..

2.1. Вычисление геометрических параметров ................………

2.2. Определение объемного и массового расхода воздуха ...…

2.3. Проводимость между воздухом внутри аппарата

и окружающей средой .................................………………..

2.4. Определение тепловых коэффициентов ..................……….

2.5. Определение перегревов и температур нагретой зоны

и корпуса аппарата……………………………………………

Заключение…………………………………………………………

Список используемых источников ..........................……………..












ВВЕДЕНИЕ

Большинство радиотехнических устройств, потребляя от

источников питания мощность, измеряемую десятками, а иногда и

сотнями ватт, отдают полезной нагрузке от десятых долей до единиц

ватт. Остальная электрическая энергия, подводимая к аппарату,

превращаясь в тепловую, выделяется внутри аппарата. Температура

нагрева аппарата оказывается выше температуры окружающей среды, в

результате чего происходит процесс отдачи теплоты в окружающее

пространство. Этот процесс идет тем интенсивнее, чем больше

разность температур аппарата и окружающей среды.

Специалисты в области создания новых радиоэлектронных

аппаратов знают, что расчеты теплового режима аппаратов столь же

необходимы, как и расчеты, связанные с функциональным назначением

их.

Интуитивные методы проектирования РЭС и в частности реализация нормального теплового режима складывались годами. Такой подход в настоящее время оказывается не в состоянии обеспечить выбор в исключительно сжатые сроки безошибочных, близких к оптимальным решений.

Известно, что надежность элементов радиоэлектронной аппаратуры сильно зависит от температуры окружающей среды. Для каждого типа элемента в технических условиях указывается предельная температура, при превышении которой элемент нельзя эксплуатировать. Поэтому одна из важнейших задач конструктора радиоэлектронной аппаратуры состоит в том, чтобы обеспечить правильные тепловые режимы для каждого элемента.

Целью данной курсовой работы является получение навыков теплового расчета на примере аппарата с перфорированным корпусом.


1. АНАЛИЗ ИСХОДНЫХ ДАННЫХ

Дан аппарат с перфорированным корпусом. Размеры корпуса: L1 = 500 мм; L2 = 300 мм; L3 = 490 мм. Размеры шасси: l1 = 480 мм; l2 = 200 мм; h = 120 мм. Перфорационные отверстия расположены по бокам корпуса по 12 с каждой стороны. Перфорационное отверстие показано на рисунке:

Рисунок 1. Перфорационное отверстие

Размеры отверстия: высота 10 мм, длина ( без полукругов ) 45 мм. Температура окружающей среды tc = 26 оС. Мощность источников теплоты в аппарате Ф = 100 Вт. Внутренние поверхности аппарата покрыты эмалевой краской, коэффициент заполнения Кз = 32%.












2. РАСЧЕТ ТЕПЛОВЫХ РЕЖИМОВ АППАРАТА

2.1. Вычисление геометрических параметров

2.1.1. Среднее расстояние между отверстиями для подвода-отвода воздуха.

Используя исходные данные, получим:

hср = 100 + 150 + 100/3 ~ 117 мм = 0,117 м.

2.1.2. Суммарная площадь перфорационных отверстий.

Используя исходные данные находим площадь одного

перфорационного отверстия:

Ап = 4510 + pR2 = 450 + 3,1452 = 528,5 мм2 5,310-4 м2.

Используя исходные данные, определяем:

Авх = Авых = 125,310-4 = 6,3610-3 м2.

2.1.3. Площадь поверхности корпуса.

Ак = 2(L1L3 + L2L3 + L1L2); (1)

Подставляя известные величины в формулу (1), получим

Ак = 2(0,50,49 + 0,30,49 + 0,50,3) = 1,08 м2.

2.1.4. Площадь поверхности омываемых воздухом деталей и шасси (нагретой зоны).

Ав = 2(l1h + l2h + l1l2); (2)

Подставив известные величины в (2), имеем

Ав = 2(0,480,12 + 0,20,12 + 0,480,2) = 0,36 м2.

2.1.5. Площадь поперечного сечения порожнего аппарата, свободная для прохода воздуха:

Аап = L1L3 - l1h; (3)

Используя исходные данные, из (3) получим:

Аап = 0,50,49 - 0,480,12 = 0,19 м2.

2.2. Определение объемного и массового расхода воздуха

Выделяемая деталями РЭС тепловая энергия передается конвекцией воздуху, омывающему их поверхности, а излучением - внутренней поверхности корпуса. В результате нагревания воздуха его плотность уменьшается по сравнению с плотностью воздуха вне аппарата, появляется разность давлений и воздух через верхние отверстия или жалюзи в корпусе выходит из аппарата, а на его место поступает холодный воздух через нижние отверстия в корпусе. В установившемся режиме перепад давлений, вызванный самотягой, уравновешивается гидравлическими потерями на всех участках РЭС.

2.2.1. Определим среднюю площадь поперечного сечения аппарата, свободную для прохода воздуха: Аср = Аап(1 - Кз); (4)

На основании исходных данных и данных, полученных в результате вычисления, из формулы (4) следует, что

Аср = 0,19(1 - 0,32) = 0,13 м2.

2.2.2. Определим гидравлическое сопротивление.

Для типичных РЭС, среднеобъемная температура воздуха которых t ~ 40 oC, а температура среды ~ 24 оС, была проведена оценка гидравлических сопротивлений [1] и получена приближенная формула:


(5)


Подставляя в формулу (5) полученные в результате расчета по п.2.1 и п.2.2.1 данные, получим:




2.2.3. Массовый расход воздуха:

Массовый расход воздуха определим по приближенной формуле (6), полученной в результате экспериментальных данных [1]:



G = 1,36 h/R ; (6)


Подставив известные величины, получим:




G = 1,36 0,117/6,677104 = 1,810-3 кг/с.

2.2.4. Объемный расход воздуха

Объемный расход воздуха найдем по формуле (7):


GV = G/r, (7)


где r = 1,28 кг/м2 определен для t = 40 oC из таблицы А3 [1].

Таким образом : GV = 1,810-3/1,28 = 1,4110-3 м3/с = 1,41 л/с.


2.3. Проводимость между воздухом внутри аппарата и окружающей средой

Определяется по формуле (8):


W = 103G; (8)


в формулу (8) полученный в п.2.2.3 массовый расход воздуха, получим: Подставляя получаем : W = 1031,810-3 = 1,8 Вт/К.


2.4. Определение тепловых коэффициентов

Для определения температур в аппарате со свободной вентиляцией следует использовать уравнения (9):


(9)



Параметры А1, А3, F1, F3 имеют следующую структуру:


(10)


Параметры B и D, входящие в формулы (10), можно определить так:


; (11)

; (12)


Анализ экспериментальных данных [1] показал, что при свободной вентиляции РЭС значения коэффициентов конвективной теплоотдачи между зоной и воздухом, корпусом и воздухом внутри аппарата примерно равны a12к = a23к = 6 Вт/(м2К), тогда

12к = 6А1, 23к = 6А3, а = 9А3. Подставляя в (10)

приближенные значения проводимостей, получим уравнения (13):

(13)

В нашем случае А1 = Ав; А3 = Ак. Подставляя известные величины в уравнения (13), получим:




Определим тепловые коэффициенты:





2.5. Определение перегревов и температур нагретой зоны и корпуса аппарата

2.5.1. Средний поверхностный перегрев нагретой зоны Определим по формуле (14):

q1 = F1Ф; (14)

Подставляя известные величины, получим

q1 = 0,137100 = 13 К.

2.5.2. Средний поверхностный перегрев корпуса аппарата Определим по формуле (15):

q3 = F3Ф; (15)

Подставляя известные величины, получим

q3 = 0,047100 = 4 К.




2.5.3. Средняя температура нагретой зоны

Определим по формуле (16):

t1 = tc + q1; (16)

Подставив известные величины в (16), получим t1 = 26 + 13 = 39 оС.

2.5.4. Средняя температура корпуса аппарата Определим по формуле (17):

t3 = tc + q3; (17)

Подставив известные величины в (17), получим

t3 = 26 + 4 = 30 оС.

На основании данных, полученных в п.2.5, строим график тепловых характеристик корпуса и нагретой зоны аппарата.

ЗАКЛЮЧЕНИЕ

В данной курсовой работе был проведен расчет тепловых режимов аппарата с перфорированным корпусом для получения практических навыков тепловых расчетов радиоэлектронных устройств, так как для обеспечения стабильной и безотказной работы в течении всего срока эксплуатации любого радиоэлектронного устройства требуется правильно обеспечить тепловой режим работы электронных компонентов данного аппарата.

В результате расчета были определены:

- средний поверхностный перегрев нагретой зоны;

- средний поверхностный перегрев корпуса аппарата;

- средняя температура нагретой зоны;

- средняя температура корпуса аппарата;

- массовый расход воздуха через аппарат;

- объемный расход воздуха.











СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

1. Дульнев Г.Н. Тепло- и массообмен в радиоэлектронной аппаратуре. - М.: Высшая школа, 1984 г.

2. Фрумкин Г.Д. Расчет и конструирование радиоаппаратуры. -

М.: Высшая школа, 1989 г.

3. Гелль П.П., Иванов-Есипович Н.К. Конструирование и микроминиатюризация радиоэлектронной аппаратуры. - Л.: Энергоатомиздат, 1984 г.


Случайные файлы

Файл
42812.rtf
57026.rtf
115166.rtf
42298.rtf
71331.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.