Расчет тонкопленочного конденсатора (kur_mat_new)

Посмотреть архив целиком


ВВЕДЕНИЕ


В пленочных интегральных микросхемах элементы создаются осаждением пленок на специальные платы из диэлектрических материалов—подложки . Подложка служит механическим основанием, и, будучи диэлектриком, изолирует её элементы. На основе напыленных пленок в настоящее время изготавливаются только пассивные элементы ( резисторы и конденсаторы). Пленочные схемы, дополненные активными элементами (диодами, транзисторами, полупроводниковыми ИС) при­нято называть гибридными ИС (ГИС). Активные элементы в этих схемах крепятся на подложке методом навесного монтажа.

Такая технология изготовления ИС, при которой пассивные и активные элементы создаются по двум не зависимым друг от друга циклам, приводит к ряду преимуществ, которые обусло­вили широкое производство и использование ГИС. Гибридные ИС характеризуются простотой изготовления, малой трудоемкостью, непродолжительностью производственного цикла и в силу этого низкой стоимостью.

Многоуровневое расположение пассивных элементов и исполь­зование в качестве активных элементов полупроводниковых ИС расширяют возможности схемотехнической разработки при со­здании БИС.

Технология изготовления тонких и толстых пленок позволяет создавать прецизионные резисторы и конденсаторы, в силу чего гибридная технология предпочтительнее в схемах с повышенной точностью пассивных элементов.

Интегральные микросхемы, работающие в СВЧ диапазоне, также создаются по гибридной технологии. При этом исключа­ются трудности, связанные с изоляцией элементов толстыми ди­электрическими слоями, неизбежной, если СВЧ ИС выполняется как полупроводниковая.


МАТЕРИАЛЫ ПОДЛОЖЕК

Размеры подложек выбираются в соответствии со степенью интеграции ИС, их материалы в соответствии с требованиями, предъявляемыми к электрическим, механическим и термическим свойствам подложек. В свою очередь эти требования обусловле­ны заданными параметрами пленочных элементов и выбором технологических методов нанесения пленок.

Рассмотрим требования к подложкам. Материал подложек должен иметь высокие объемное и поверхностное удельные со­противления. Это требование вытекает из необходимости обеспе­чения электрической развязки между элементами. Кроме того, для большинства материалов с высоким удельным сопротивлени­ем существует определенная взаимосвязь между сопротивлением и их стойкостью к влиянию различных веществ, в том числе из окружающей среды. Низкие диэлектрические потери снижают потери энергии вследствие поглощения в диэлектрике. Высокая теплопроводность обеспечивает отвод тепла от микросхемы и вы­равнивание температурного градиента по ее поверхности. Согла­сование коэффициентов линейного расширения подложки и оса­ждаемых пленок уменьшает механические напряжения в пленках и тем самым снижает вероятность появления в них микротре­щин, разрывов и т.п. Высокая механическая прочность облегчает механическую обработку подложек (для получения требуемой формы и размеров и создания в них отверстий), а также преду­преждает поломку подложек при сборке микросхем. Подложки должны быть достаточно термостойкими при пайке и сварке; ма­териал подложки и структура поверхности должны обеспечивать хорошую адгезию осаждаемых пленок к подложке.

Перечисленные требования к подложкам являются общими для тонкопленочных и толстопленочных микросхем. Однако в си­лу значительного различия в свойствах толстых и тонких пленок и методов их нанесения параметры подложек для толсто- и тонкопленочных ИС не совпадают. Это в наибольшей степени относит­ся к адгезии: для тонких и толстых пленок необходимая шеро­ховатость поверхности существенно различается.

В табл. 1.1 приведены характеристики диэлектрических мате­риалов, которые в большей или меньшей степени удовлетворяют требованиям, предъявляемым к подложкам для тонко- и толстопленочных ИС. Ниже приводится состав рассмотренных мате­риалов.

Таблица 1.1. Характеристики подложек

Материал диэлект­рика

Удельное со­противление, Ом *см

Диэл.

Пост.

Диэлектрические потери на частоте 106 Гц

Теплопровод­ность, кал/см*с oС

Коэф линей. расш.

10-6 / oC

Бороcиликатное стекло

107

4,6

6,2*10-3

0,0027

3,25

Алюмоокcидная керамика типа «Поликор»



1014



10,8



2*10-4



0,075—0,08



7,5—7,8

Кварцевое стекло


1016

4

3,8*10-4

0,0036

0,56—0,6

Ситаллы

10131014

6,5

6*10-3

0,005—0,009

. 5

Лейкосапфир

1011

8,6

2*10-4

0,0055

5



Стекла представляют собой различные системы окислов. Боросиликатное стекло состоит из SiO2 (80%), В2О3 (12%) и дру­гих окислов (Na2O, K2O, Al2O3), алюмосиликатное из SiO2 (60%), Al2O3 (20%) и других окислов (Na2O, CaO, MgO, B2O3). Стекла типов С-48-3 и С-41-1 являются бесщелочными.

Керамика поликристаллическое вещество с зернами слож­ной структуры, получаемое в результате высокотемпературного отжига (спекания) порошков различных окислов. Алюмооксидная керамика типа «Поликор» состоит из Al2O3 (99,8%), B2O3 (0,1%), MgO (0,1°/о). Размер зерен менее 40 мкм. Бериллиевая керамика содержит от 98 до 99,5% окиси бериллия ВеО.

Ситаллы стеклокерамические материалы, получаемые в результате термообработки (кристаллизации) стекла. Большинст­во ситаллов характеризуется следующим составом окислов:

1) Li2O—Al2O3 —Si02 —Ti02 ; 2) RО—А12O3 SiO2 TiO2 (ROодин из окислов СаО, MgO или ВаО).

Лейкосапфир чистый монокристаллический окисел алюми­ния а-модификации.

Сравнительный анализ этих материалов позволяет сделать следующие выводы.

Стекла имеют недостаточную прочность, низкую теплопровод­ность, недостаточную химическую стойкость, для них характерно сильное газовыделение при нагреве. Благодаря содержанию окис­лов щелочных металлов возможно образование ионов этих ме­таллов, обладающих повышенной миграцией при приложении электрического поля и обусловливающих нестабильность свойств стеклянных подложек и элементов микросхем. Повышение хими­ческой стойкости и стабильности тонкопленочных ИС обеспечи­вается подложками из бесщелочных стекол С-41-1 и С-48-3.

Керамика, особенно бериллиевая, имеет значительно большую теплопроводность по сравнению со стеклами. Кроме того, она обладает большей механической прочностью и лучшей химиче­ской стойкостью. Однако большие размеры зерен керамических материалов не позволяют получить удовлетворительный микро­рельеф поверхности для тонкопленочных ИС. Мелкозернистая керамика с размером зерен в десятые доли микрона широко используется для подложек толстопленочных ИС. При этом наи­более удовлетворительным микрорельефом обладает керамика с 96%-ным содержанием Al2O3. Керамика с более высоким содер­жанием А120з, например типа «Поликор», имеет слишком глад­кие поверхности, не обеспечивающие хорошей адгезии к ним тол­стых пленок. Полировка мелкозернистой керамики снижает ми­кронеровности, однако вызывает существенные и трудно устрани­мые загрязнения ее поверхности. Поэтому такая операция не поз­воляет получить подложки, пригодные для тонкопленочных ИС.

Ситаллы в 2—3 раза превосходят стекла по механической прочности. Они хорошо прессуются, вытягиваются, прокатывают­ся. Диэлектрические свойства ситаллов лучше, чем стекол, и они практически не уступают керамике.

Лейкосапфир характеризуется хорошими диэлектрическими свойствами. Однако технология его получения (обычно вытяги­вание монокристаллов по методу Чохральского) не позволяет получить пластины больших размеров низкой стоимости.

По совокупности диэлектрических и механических свойств, микрорельефу поверхности, стойкости к химическому воздействию наиболее приемлемыми материалами подложек для тонкопленоч­ных микросхем 'являются ситаллы, для толстопленочных — 96%-ная алюмооксидная керамика.


МАТЕРИАЛЫ ПЛЕНОК


Тонкопленочный конденсатор имеет трехслойную структуру металл — ди­электрик — металл, расположенную на изолирующей подложке. Основными па­раметрами диэлектрических материалов для конденсаторов являются удель­ная емкость Суд =e0*e/d, определяемая диэлектрической постоянной вое и тол­щиной слоя диэлектрика d, и электрическая прочность Ед.

Из-за сложности создания бездефектных пленок на большей площади мак­симальная площадь конденсатора ограничивается. Минимальная площадь ог­раничивается заданной точностью. Отсюда для обеспечения широкого диапазо­на емкостей возникают определенные требования к удельным емкостям. По­скольку существует предел и для минимальной толщины пленок (из-за влия­ния пор и дефектов в пленке диэлектрика на ее электрическую прочность), то при изготовлении тонкопленочных конденсаторов к диэлектрической постоянной материала предъявляются определенные требования. Если ограничить толщину пленки величиной 0,1 мкм, а максимальную и минимальную площади соот­ветственно 2-Ю2 и 0,2 мм2, то для обеспечения диапазона емкостей 10—106 Ф требуются диэлектрические постоянные, примерно равные 0,5—50.

Электрическая прочность диэлектрического материала определяет напряже­ние пробоя Uддd, а следовательно, и диапазон рабочих напряжений кон­денсатора. Кроме требований к удельной емкости и электрической прочности диэлектрические материалы должны обладать минимальной гигроскопичностью, высокой механической прочностью при циклических изменениях температуры, хорошей адгезией к подложкам.


Случайные файлы

Файл
128066.doc
kurs_privat.doc
82393.rtf
176131.rtf
41269.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.