Программная реализация модального управления для линейных стационарных систем (135481)

Посмотреть архив целиком




Курсовая работа:

«Программная реализация модального управления для линейных стационарных систем»




Постановка задачи:


1. Для объекта управления с математическим описанием

, (1) - задано,

где - n-мерный вектор состояния, ,

- начальный вектор состояния,

- скалярное управление,

- матрица действительных коэффициентов,

- матрица действительных коэффициентов,

найти управление в функции переменных состояния объекта, т.е.

, (2)

где- матрица обратной связи, такое, чтобы замкнутая система была устойчивой.

2. Корни характеристического уравнения замкнутой системы

(3)

должны выбираться по усмотрению (произвольно) с условием устойчивости системы (3).



Задание:


1. Разработать алгоритм решения поставленной задачи.

2. Разработать программу решения поставленной задачи с интерактивным экранным интерфейсом в системах Borland Pascal, Turbo Vision, Delphi - по выбору.

3. Разработать программу решения систем дифференциальных уравнений (1) и (3) с интерактивным экранным интерфейсом.

4. Разработать программу графического построения решений систем (1) и (3) с интерактивным экранным интерфейсом.














Введение

Наряду с общими методами синтеза оптимальных законов управления для стационарных объектов всё большее примене­ние находят методы, основанные на решении задачи о размеще­нии корней характеристического уравнения замкнутой системы в желаемое положение. Этого можно добиться надлежащим выбором матрицы обратной связи по состоянию. Решение ука­занной задачи является предметом теории модального управ­ления (термин связан с тем, что корням характеристического уравнения соответствуют составляющие свободного движения, называемые модами).



Алгоритм модального управления.


Соглашения:

  • Задаваемый объект управления математически описывается уравнением

    , (1)

    где и - матрицы действительных коэффициентов,

    - n-мерный вектор состояния

    - скалярное управление,

    - порядок системы (1).

  • Обратная связь по состоянию имеет вид

    , (2)

    где- матрица обратной связи.

  • Система с введенной обратной связью описывается уравнением

    (3)

  • Характеристическое уравнение системы (1) имеет вид

    (4)

  • Характеристическое уравнение системы (3) с задаваемыми (желаемыми) корнями имеет вид

    (5)

    Алгоритм:

    1. Для исходной системы (1) составляем матрицу управляемости

    2. Обращаем матрицу , т.е. вычисляем .

    Если не существует (т.е. матрица - вырожденная), то прекращаем вычисления: полное управление корнями характеристического уравнения (5) не возможно.

    3. Вычисляем матрицу

    4. Составляем матрицу

    5. Вычисляем матрицу, обратную матрице , т.е.

    6. Вычисляем матрицу - матрицу в канонической форме фазовой переменной:

    где - коэффициенты характеристического уравнения (4).

    Матрица в канонической форме имеет вид

    7. Составляем вектор , элементам которого являются коэффициенты характеристического уравнения (4), т.е. , ,

    где - элементы матрицы .

    8. Находим коэффициенты характеристического уравнения (5) (см. пояснения) и составляем из них вектор .

    9. Вычисляем вектор .