Однозеркальная антенна (ANTENNA)

Посмотреть архив целиком


Общие сведения и принцип действия зеркальной антенны.

Зеркальными антеннами называют антенны, у которых поле в раскрыве формируется в результате отражения электромагнитной волны от металлической поверхности специального рефлектора (зеркала). Источником электромагнитной волны обычно служит какая-нибудь небольшая элементарная антенна, называемая в этом случае облучателем зеркала или просто облучателем. Зеркало и облучатель являются основными элементами зеркальной антенны.

Зеркало обычно изготовляется из алюминиевых сплавов. Иногда для уменьшения парусности зеркало делается не сплошным, а решетчатым. Поверхности зеркала придается форма, обеспечивающая формирование нужной диаграммы направленности. Наиболее распространенными являются зеркала в виде параболоида вращения, усеченного параболоида, параболического цилиндра или цилиндра специального профиля. Облучатель помещается в фокусе параболоида или вдоль фокальной линии цилиндрического зеркала. Соответственно для параболоида облучатель должен быть точечным, для цилиндра – линейным. Наряду с однозеркальными антеннами применяются и двухзеркальные.

Рассмотрим принцип действия зеркальной антенны. Электромагнитная волна, излученная облучателем, достигнув проводящей поверхности зеркала, возбуждает на ней токи, которые создают вторичное поле, обычно называемое полем отраженной волны. Для того чтобы на зеркало попадала основная часть излученной электромагнитной энергии, облучатель должен излучать только в одну полусферу в направлении зеркала и не излучать в другую полусферу. Такие излучатели называют однонаправленными.

В раскрыве антенны отраженная волна обычно имеет плоский фронт для получения острой диаграммы направленности либо фронт, обеспечивающий получение диаграммы специальной формы. На больших (по сравнению с длиной волны и диаметром зеркала) расстояниях от антенны эта волна в соответствии с законами излучения становится сферической. Комплексная амплитуда напряженности электрического поля этой волны описывается выражением

,

где - нормированная диаграмма направленности, сформированная зеркалом.

П
ринцип действия простейшей зеркальной антенны приведен на рисунке:

1 – зеркало, 2 – облучатель, 3 – сферический фронт волны облучателя, 4 – плоский фронт волны облучателя, 5 – диаграмма направленности облучателя, 6 – диаграмма направленности зеркала.

Точечный облучатель (например, маленький рупор), расположенный в фокусе параболоида, создает у поверхности зеркала сферическую волну. Зеркало преобразует ее в плоскую, т.е. расходящийся пучок лучей преобразуется в параллельный, чем и достигается формирование острой диаграммы направленности.

Геометрические характеристики параболоидного зеркала.

Вспомним основные геометрические свойства параболоида.

  1. Н
    ормаль к поверхности параболоида в любой точке лежит в плоскости, содержащий ось Z, и составляет угол с прямой, соединяющей эту точку с фокусом.

Любое сечение параболоида плоскостью, содержащее ось Z, является параболой с фокусом в точке F. Кривая, получающаяся при сечения параболоида плоскостью, параллельной оси Z, является также и параболой с тем же фокусным расстоянием f.

И
з первого свойства следует, что если поместить точечный источник электромагнитных волн в фокусе параболоида, то все лучи после отражение будут параллельны оси Z.

Это означает, что отраженная волна будет плоской с фронтом, перпендикулярным оси Z параболоида.

Из второго свойства следует, что для анализа вопросов отражения волн от поверхности зеркала и наведения на нем токов можно ограничиться рассмотрением любого сечения зеркала плоскостью, проходящей через ось Z или параллельно ей. Кроме того, из второго свойства вытекает, что для контроля точности изготовления параболического зеркала достаточно иметь только один шаблон.

При анализе параболических зеркал удобно одновременно использовать различные системы координат, переходя в процессе анализа от одной к другой, более удобной для последующих расчетов. Такими системами координат являются:

  1. Прямоугольная с началом в вершине параболоида и осью Z, совпадающей с осью его вращения. Уравнение поверхности зеркала в этой системе координат имеет вид

.

  1. Цилиндрическая система . Здесь и - полярные координаты, отсчитываемые в плоскости Z=const. Угол отсчитывается от плоскости XOZ. Уравнение параболоида в этих координатах будет

.

Цилиндрическую систему координат удобно использовать при определении координат точек истока (т.е. точек источников поля).

  1. Сферическая система координат с началом в фокусе F и полярной осью, совпадающей с осью Z. Здесь - полярный угол, отсчитываемый от отрицательного направления оси - азимут, тот же, что в цилиндрической системе. Уравнение поверхности зеркала в этой системе координат нами уже было получено: . Эта система координат удобна для описания диаграммы направленности облучателя.

  2. Сферическая система координат с началом в фокусе параболоида. Здесь - полярный угол, отсчитываемый от положительного направления оси Z; - азимут, отсчитываемый от плоскости XOZ. Эта система координат удобна для определения координат точки наблюдения и будет использована при расчете поля излучения.

Поверхность, ограниченная кромкой параболоида и плоскостью , называется раскрывом зеркала. Радиус этой поверхности называется радиусом раскрыва. Угол , под которым видно зеркало из фокуса, называется углом раскрыва зеркала.

Форму зеркала удобно характеризовать либо отношением радиуса раскрыва к двойному расстоянию (параметру параболоида) либо величиной половины раскрыва . Зеркало называют мелким, или длиннофокусным, если , глубоким, или короткофокусным, если .

Л
егко найти связь между отношением и углом .

Из рис.1 следует, что

;

откуда

.

У длиннофокусного параболоида , у короткофокусного . При (фокус лежит в плоскости раскрыва зеркала) .

Апертурный метод расчет поля излучения.

В апертурном поле излучения зеркальной антенны находится по известному полю в ее раскрыве. В этом методе, в качестве излучающей рассматривается плоская поверхность раскрыва параболоида с синфазным полем и известным законом распределения его амплитуды.

Амплитудный метод в том виде, в котором он используется на практике, является менее точным, чем метод расчета через плотность тока. Это объясняется тем, что в этом случае поле в раскрыве зеркала находится по законам геометрической оптики. Следовательно, не учитывается векторный характер поля и, как результат этого, не учитывается составляющие с паразитной поляризацией. Однако в пределах главного лепестка и первых боковых лепестков, т.е. в наиболее важной для нас области диаграммы направленности, оба метода практически дают одинаковые результаты. Поэтому на практике наибольшее распространение получил апертурный метод расчета как более простой.

Задача нахождения поля излучения зеркальной антенны при апертурном методе расчета, как и в общей теории антенн разбивается на две:

  1. Вначале находится поле в раскрыве антенны (внутренняя задача).

  2. По известному полю в раскрыве определяется поле излучения (внешняя задача).

А). Определение поля в раскрыве параболоидного зеркала.

Поле в раскрыве определяется методом геометрической оптики. Всегда выполняется условие , следовательно, зеркало в дальней зоне и падающую от облучателя волну на участке от фокуса до поверхности зеркала можно считать сферической.

В сферической волне амплитуда поля изменяется обратно пропорционально . После отражения от поверхности зеркала волна становится плоской и амплитуда ее до раскрыва зеркала с расстоянием не изменяется. Таким образом, если нам известна нормированная диаграмма направленности облучателя , поле в раскрыве зеркала легко находится.

Для удобства расчетов введем нормированную координату точки в раскрыве зеркала


;

Подставим значение и