Методы измерения переменных токов и напряжений средней и низкой частоты (135425)

Посмотреть архив целиком


Министерство общего и профессионального образования


Самарский государственный технический университет



Кафедра: Робототехнические системы



Метрология и радиоизмерения



Тема: Методы и средства измерения переменных токов

и напряжений средней и низкой частоты






Выполнил: Бугаёв Алексей Александрович

ЗФ-III-13

шифр №994824








Самара, 2002



Содержание.

Содержание. 2

Введение. 3

1. Методы измерения 3

1.1 Метод непосредственной оценки 4

1.2 Метод сравнения 5

2. Средства измерения (Электромеханические амперметры и вольтметры) 5

2.1 Магнитоэлектрические приборы 8

2.2 Электромагнитные приборы 13

2.3 Электродинамические приборы 16

2.4 Ферродинамические приборы 18

2.5 Электростатические приборы 18

2.6 Термоэлектрические приборы 20

2.7 Выпрямительные приборы 21

Заключение. 24



Введение.


В эпоху научно-технической революции темпы развития науки и техники в значительной степени определяются научным и техническим уровнем измерения. В свою очередь уровень развития измерительной техники является одним из важнейших показателей прогресса науки и техники. Это особенно справедливо для электрорадиоизмерений, поскольку исследования в области физики, радиотехники, электроники, космонавтики, медицины, биологии и других отраслей человеческой деятельности базируются на измерениях электромагнитных величин.

Основными направлениями качественной стороны развития электрорадиоизмерительной техники являются:

  • повышение точности измерения;

  • автоматизация процессов измерения;

  • повышение быстродействия и надежности измерительных приборов;

  • уменьшение потребляемой мощности питания и габаритов всех средств измерительной техники.

Электрорадиоизмерения, как и другие измерения, основаны на метрологии.


Метрология – наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.


  1. Методы измерения


Перед измерением тока (напряжения) нужно иметь представление о его частоте, форме, ожидаемом значении, требуемой точности измерения и сопротивлении цепи, в которой производится измерение. Эти предварительные сведения позволят выбрать наиболее подходящий метод измерения и измерительный прибор.

Для измерения тока и напряжения применяют метод непосредственной оценки и метод сравнения.


    1. Метод непосредственной оценки


М
етод непосредственной оценки осуществляют с помощью прямопоказывающих приборов – амперметров и вольтметров со шкалами, градуированными в единицах измеряемой величины. Амперметр включают последовательно с нагрузкой (в разрыв цепи); вольтметр присоединяют параллельно участку цепи, падение напряжения на котором нужно измерить (рис.1). Включенный в цепь прибор оказывает на ее режим определенное влияние, для уменьшения которого необходимо строго выполнять следующие условия:

  • внутреннее сопротивление амперметра RA должно быть много меньше сопротивления нагрузки Rн;

  • внутреннее сопротивление вольтметра RV должно быть много больше сопротивления нагрузки Rн;

Невыполнение этих условий приводит к систематической методической погрешности, которая приблизительно совпадет со значениями отношений RA/RН и RН/RV. Условие RV > RН особенно трудно выполнить при измерении напряжения на участках (нагрузках) с большим сопротивлением в так называемых слаботочных цепях. Для этой цели применяют электронные вольтметры с входным сопротивлением до сотен мегаом.

С повышением частоты погрешность измерений тока увеличивается.


    1. Метод сравнения


Метод сравнения обеспечивает более высокую точность измерения. Его осуществляют с помощью приборов – компенсаторов, отличающихся тем свойством, что в момент измерения мощность от измеряемой цепи не потребляется, т.е. входное сопротивление практически бесконечно. Это свойство позволяет применять компенсаторы для измерения ЭДС. Метод сравнения реализуется также в цифровых вольтметрах дискретного действия и аналоговых компенсационных вольтметрах, благодаря чему погрешность измерения составляет десятые, сотые и даже тысячные доли процента.


  1. Средства измерения (Электромеханические амперметры и вольтметры)

Электромеханические измерительные приборы относятся к приборам прямого преобразования, в которых электрическая измеряемая величина х непосредственно преобразуется в показания отсчетного устройства. Таким образом, любой электромеханический прибор состоит из следующих главных частей:

  • неподвижной, соединенной с корпусом прибора;

  • подвижной, механической или оптической связанной с отсчетным устройством.

Отсчетное устройство предназначено для наблюдения значений измеряемой величины. Оно состоит из шкалы и указателя, располагаемых на лицевой стороне прибора. Шкалой называется совокупность отметок (штрихов), расположенных в определенной последовательности, и проставленных у некоторых из них чисел отсчета, соответствующих ряду последовательных значений измеряемой величины. Шкалы могут быть равномерными и неравномерными (квадратичными, логарифмическими и др.). Расстояние между двумя соседними штрихами называется делением шкалы. Разность значений измеряемой величины, соответствующая двум соседним отметкам называется ценой деления.

Указатели делятся на стрелочные и оптические. Оптические указатели состоят из источника света, зеркальца, расположенного на подвижной части, и системы зеркал удлиняющих путь луча света и направляющих его на полупрозрачную шкалу. Оптические указатели обеспечивают большую чувствительность прибора и меньшую погрешность отсчета по сравнению со стрелочным.

П
одвижная часть прибора снабжается осью или полуосями, которые оканчиваются запресованными в них стальными кернами. Последние опираются на корундовые или рубиновые подпятники (Рис.2,а). Трение керна о подпятник снижает чувствительность и точность прибора, поэтому подвижную часть устанавливают на растяжках или подвесах (Рис.2,б,в).

Электромеханический измерительный прибор содержит следующие узлы:

  • узел, создающий вращающий момент;

  • узел, создающий противодействующий момент;

  • успокоитель

Электромагнитная энергия Wэм поступает от измеряемого объекта в узел, создающий вращающий момент, и вызывает поворот подвижной части прибора. Вращающий момент Мв можно выразить уравнением Лангранжа второго рода:

(1)

Под воздействием вращающего момента подвижная часть всегда будет поворачиваться до упора. Необходим противодействующий момент Мп , направленный навстречу вращающему моменту. Противодействующий момент можно получить за счет механических или электрический сил. В первом случае он создается с помощью плоских спиральных пружин или металлических нитей, закрепленных концами на неподвижной и подвижной частях прибора и закручивающихся при повороте подвижной части. Механический противодействующий момент прямо пропорционален углу поворота а:

, (2)

где W – удельный противодействующий момент, зависящий от свойств упругого элемента.

Во втором случае противодействующий момент создается за счет электромагнитной энергии измеряемой величины в соответствии с формулой .

Движение подвижной части прибора прекращается в некотором положении а0 , когда вращающий и противодействующий моменты окажутся равными друг другу: Мв = Мп (Рис.3). Подставляя значение Мв и Мп из формул 1 и 2, можно получить выражение для угла поворота

подвижной части прибора в виде

(3)

Если противодействующий момент создается за счет электромагнитной энергии, движение прекращается в момент достижения равенства двух моментов М1 и М2 противоположного направления. В общем виде на основе формулы (1) выражения для моментов можно записать так: и , где х1 и х2 – электрические измеряемые величины.

Успокоитель предназначается для убыстрения процесса затухания колебаний подвижной части прибора, выведенной из равновесия. Момент успокоения

, (4)

где Р – коэффициент успокоения, зависящий от типа и конструкции успокоителя;

d
a/dt –
угловая скорость перемещения подвижной части.

Наиболее распространены воздушные жидкостные и магнитоиндукционные успокоители (Рис.4), с помощью которых время успокоения сокращается до 3-4с. По принципу преобразования электромагнитной энергии в механическую приборы разделяются на несколько групп (систем). Основными системами являются: магнитоэлектрическая, электромагнитная, электродинамическая (ферродинамическая) и электростатическая.

    1. Магнитоэлектрические приборы


Магнитоэлектрические приборы применяются в качестве амперметров, вольтметров и гальванометров для измерений в цепях постоянного тока, а в сочетании с преобразователями переменного тока в постоянный – и для измерений в цепях переменного тока.

Узел для создания вращающего момента состоит из сильного постоянного магнита и легкой подвижной катушки, по которой протекает измеряемый ток (Рис.5, а).

Обмотка подвижной катушки состоит из витков тонкого провода, поэтому магнитоэлектрический прибор можно применять непосредственно только в качестве микро- или миллиамперметра и милливольтметра.

Катушка в форме прямоугольной рамки помещена в кольцевом зазоре между полюсными наконечниками магнита и цилиндрическим сердечником, т.е. в радиальном магнитном поле. Принцип действия магнитоэлектрических приборов з
аключается во взаимодействии поля постоянного магнита с проводником (катушкой), по которому протекает измеряемый ток.
При этом возникает пара сил F (Рис.5, б), создающая вращающий момент. Энергия магнитоэлектрической системы является суммой энергии поля магнита Wп.м. , энергии катушки с током и энергии взаимодействия поля магнита и катушки с током I, где -- потокосцепление, численно равное произведению числа силовых магнитных линий, пересекаемых обеими сторонами катушки при ее повороте на угол а, на число витков n ее обмотки:


Случайные файлы

Файл
129300.rtf
referat.doc
183732.rtf
32389.rtf
29496.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.