Лекции по твердотельной электронике (L06_09_2002)

Посмотреть архив целиком

113


Воронков Э.Н. Твердотельная электроника. 2002г.



Содержание

Лекция 6 68

2. ДИОДЫ. 68

2.1. Полупроводниковые диоды с электронно-дырочным переходом (pn - переходом). 68

2.2. Электронно-дырочный переход (pn – переход). Возникновение потенциального барьера. Контактная разность потенциалов. 72

Лекция 7 81

2.3. Вольтамперная характеристика pn перехода 81

2.4. Влияние генерационно-рекомбинационных процессов на ВАХ pn перехода. 95

Лекция 8 96

2.5. Барьерная емкость pn перехода 96

2.6. Диффузионная емкость pn перехода 101

Лекция 9 105

2.7. Переходные процессы 105

2.6. Пробой pn перехода 114



Лекция 6

2. ДИОДЫ.


2.1. Полупроводниковые диоды с электронно-дырочным переходом (pn - переходом).


Простейшим полупроводниковым прибором является диод, представляющий полупроводниковый кристалл с электронно-дырочным (pn) переходом. На рис. 2.1. приведены обозначение диода, его конструкция и диаграмма распределения примеси. Вблизи контактов, как правило, концентрация примеси и соответственно основных носителей заряда повышена. Это сделано для того, чтобы снизить сопротивление между металлическим контактом и полупроводниковой областью. Основным элементом диода является электронно-дырочный переход (pn-переход) .

Рис. 2.1. Полупроводниковый диод с pn-переходом: обозначение, конструкция, распределение примеси


Электронно-дырочный переход - основной элемент не только диодов, но и других биполярных приборов, поскольку именно электронно-дырочный переход позволяет управлять потоками носителей заряда в биполярных приборах. Электронно-дырочный переход создают в кристалле изменением типа проводимости, путем введения соответственно акцепторной и донорной примеси.

Существует большое количество способов создания pn перехода. На рис. 3.2. представлены схемы сплавной, диффузионной и эпитаксиально-диффузионной технологий.


Рис. 2.2. Схемы изготовления pn перехода различными технологическими способами.


При сплавной технологии электронно-дырочный переход образуется на границе раздела исходного кристалла и рекристаллизованной полупроводниковой области , в которую происходило вплавление (рис. 2.2а). На рис. 2.2б показан способ изготовления pn перехода диффузией акцепторной примеси в кристалл n-типа. Особенность технологии показанной на рис. 2.2.в в том, что диффузия осуществляется в кристалл с полупроводниковой пленкой n типа, выращенной на кристалле n+ типа специальной эпитаксиальной технологией, позволяющей сохранить структуру кристалла в пленке.

Особенность электрических характеристик диода в том, что он обладает низким сопротивлением при одной полярности приложенного к нему напряжения (плюс на аноде - прямое включение) и высоким сопротивлением при другой полярности (минус на аноде - обратное включение). Это свойство диода обеспечило ему широкое применение в выпрямителях - схемах преобразования переменного напряжения в постоянное.

На рис. 2.3. показана вольтамперная характеристика полупроводникового диода средней мощности – зависимость I(U), кривая 1.

Рис. 2.3. Вольтамперные характеристики полупроводникового диода (1) и идеального выпрямителя (2).



На том же рис. 2.3 приведена характеристика "идеального" ключа, который пропускает ток при положительном напряжении и не пропускает при отрицательном. Как видно из сравнения графиков, свойства полупроводникового диода близки к свойствам идеального выпрямителя, поскольку для него ток в прямом направлении может в миллионы раз быть больше тока в обратном направлении.

  К основным недостаткам полупроводникового диода следует отнести: при прямом смещении - наличие области малых токов на начальном участке ("пятка") и конечного сопротивления толщи rs ; при обратном - наличие пробоя и небольшого (однако сильно возрастающего с температурой) обратного тока.

Следует обратить внимание на то, что прямая и обратная ветви вольтамперной характеристики представлены на рис. 2.3 в разном масштабе.

Рассмотрим работу диода на активную нагрузку (рис. 1.4). Соответствующая схема показана на рис. 2.4 а. Ток через диод описывается его вольтамперной характеристикой Iдиод = f(Uдиод) , ток через нагрузочное сопротивление будет равен току через диод Iдиод = Iнагр = I , поскольку соединение последовательное, и для него справедливо соотношение Iнагр = (U(t) - Uдиод)/Rн.

На рис. 2.4 показаны линии, описывающие эти функциональные зависимости: ВАХ диода и нагрузочную характеристику.


Рис. 2.4. Диаграмма, поясняющая работу диода на активную нагрузку.


Как видно из рисунка, чем круче характеристика диода и чем меньше зона малых токов ("пятка"), тем лучше выпрямительные свойства диода. Заход рабочей точки в предпробойную область приводит не только к выделению в диоде большой мощности и возможному его разрушению, но и к потере выпрямительных свойств.

При электротехническом анализе схем с диодами отдельные ветви ВАХ представляют в виде прямых линий, что позволяет представить диод в виде различных эквивалентных схем, см. рис. 2.5. Выбор той или иной схемы замещения диода определяется конкретными условиями анализа и расчета устройства, в котором он применяется.

Рис. 2.5. Эквивалентные схемы диода при прямом и обратном включении.


Выпрямительные свойства полупроводникового диода обусловлены асимметрией электрических свойств его основного элемента pn - перехода.

Диоды с pn переходом относят к биполярным приборам, поскольку в процессах переноса заряда через контактную область участвуют как электроны так и дырки.

Рассмотрим основные явления, которые приводят к возникновению на границе между p и n областями потенциального барьера (запирающего слоя), определяющего нелинейность вольтамперной характеристики (ВАХ) диода.


2.2. Электронно-дырочный переход (pn – переход). Возникновение потенциального барьера. Контактная разность потенциалов.


На рис. 2.6 представлены энергетические диаграммы для легированных акцепторной примесью (p тип) и донорной примесью (n тип) двух полупроводниковых кристаллов одного и того же материала, находящихся на близком расстоянии, но не взаимодействующих друг с другом.

Как это иллюстрирует диаграмма рис. 2.6 материал p и n типа отличается положением уровней Ферми - Fp и Fn, и соответственно работой выхода Фp и Фn. За работу выхода электронов в полупроводниках принимают энергетическое расстояние от уровня Ферми до энергетического уровня соответствующего энергии электрона находящегося в вакууме с нулевой кинетическое энергией (нулевой уровень). Эту работу выхода иногда называют термодинамической, поскольку в отличие от металла, на уровне Ферми в полупроводнике в том случае, если нет соответствующих этому уровню энергетических состояний, электроны никогда не будут находиться.

Электроны могут находиться в зоне проводимости и энергию χ необходимую для того, чтобы вывести электрон со дна зоны проводимости в вакуум называют сродство к электрону.


Рис. 2.6. Энергетическая диаграмма: (а) изолированные p и n области,

(б) pn - переход.


При создании pn перехода - тесного между p и n областями тесного физического контакта (с единой кристаллической решеткой), между областями устанавливается обмен электронами, причем из материала n типа выходят преимущественно электроны, а из материала p типа преимущественно дырки (выход из кристалла дырки соответствует входу в кристалл электрона).



Не эквивалентность потоков электронов из n в p область и из p в n область приводит к тому, что на границе раздела появляется пространственный заряд. В n области заряд будет положительный , поскольку из нее уходят “примесные” электроны и остается не скомпенсированный положительный заряд ионов донорной примеси. В p области заряд будет отрицательный, поскольку из нее уходят “примесные” дырки и остается не скомпенсированный отрицательный заряд ионов акцепторной примеси. Таким образом на границе раздела (в pn переходе) возникает двойной заряженный слой, что иллюстрирует диаграмма рис. 2.7. При этом положительный заряд в p области равен отрицательному заряду в n области, так что образец в целом остается электронейтральным. Действительно общее число положительных и отрицательных зарядов в образце при возникновении области пространственного заряда (ОПЗ) не изменяется, однако происходит их перераспределение в локальной области pn перехода, внутри которой электронейтральность нарушается.

Р
ис. 2.7. Диаграмма, поясняющая возникновение области пространственного заряда (двойного заряженного слоя) в pn переходе


Возникшее контактное электрическое поле направлено от области с донорной примесью к области с акцепторной примесью, поэтому оно препятствует переходу электронов из n области и дырок из p. При некотором значении поля установится равновесие, когда количество зарядов переходящих навстречу друг другу одинаково. Этому электрическому полю соответствует равновесное значение контактной разности потенциалов.

Для нахождения контактной разности потенциалов, можно воспользоваться тем условием, что в неоднородных системах находящихся в равновесии уровень Ферми (химический потенциал) один и тот же для всех частей системы, как это показано на рис. 2.6 б для pn перехода, выполненного в едином кристалле.

Области, находящиеся на удалении от места контакта p и n областей не подвержены влиянию pn перехода, поэтому их должна характеризовать энергетическая диаграмма показанная для изолированных областей рис. 2.6а. Как видно из рис. 2.6б потенциальная энергия электронов в зонах относительно нулевого уровня в вакууме изменяется только за счет возникновения в области pn перехода пространственного заряда и соответствующего ему потенциального барьера. Как видно из диаграмм рис 2.6а и рис 2.6б величина контактной разности потенциалов равна:

, (2.1)

где Uк выражена в вольтах, а Fn и Fp в электронвольтах.

Возникновение двойного слоя пространственного заряда и соответствующего ему обусловленного контактным полем потенциального барьера нарушает симметрию транспорта через pn переход дырок и электронов. Действительно барьер существует только для основных носителей (nn и pp), поскольку в соседнюю область они перемещаются против сил электростатического взаимодействия с полем. Соответственно барьер смогут преодолеть только те носители nn и pp, тепловая энергия которых выше энергии потенциального барьера, т.е. носители попадающие в высокоэнергетический хвост распределения Больцмана (аналог распределения Максвелла в газах).

Чем выше высота потенциального барьера тем, меньше основных носителей сможет его преодолеть. Поскольку основные носители перемещаются через границу диффузионным механизмом их ток часто называют диффузионным, при этом следует обратить внимание (см. рис 2.7), что направления диффузионных токов, создаваемого nn и pp совпадают: Jдиф = Jnдиф + Jpдиф.

Для неосновных носителей (np и pn) потенциального барьера нет, поскольку направление сил их электростатического взаимодействия с контактным полем совпадает с направлением их перехода в соседнюю область, см. рис. 2.7 и рис. 2.6. Поэтому поток неосновных носителей зависит только от их концентрации в приконтактной области и не зависит от высоты барьера. Все неосновные носители, попавшие в область пространственного заряда pn перехода будут подхвачены электрическим полем и переброшены в соседнюю область. Следует обратить внимание (см. рис 2.7), что направление тока Js , создаваемого неосновными носителями np и pn, дрейфующими в электрическом поле pn перехода совпадают: Js = Jsn + Jsp. Поскольку суммарный ток через pn переход в отсутствии внешнего напряжения должен быть равен нулю, то Jдиф = -Js.

Рассмотрев основные явления, связанные с возникновением в pn переходе потенциального барьера и его влияния на транспорт носителей заряда, приступим к количественному описанию цель которого заключается в построении математической модели, которая могла бы связать электрические характеристики перехода с технологическими параметрами областей и температурой окружающий среды.

Используя соотношения, полученные в предыдущем разделе запишем соотношения для расчета основных и неосновных носителей заряда в p и n областях через значения уровня Ферми в соответствующих областях (рис. 2.6). Обозначим равновесные концентрации индексом 0.

(2.2)

Используя (2.2) возьмем отношения nn0/np0 и pp0/pn0, после логарифмирования получим:

Откуда рассчитаем разность уровней Ферми и используя (2.1) получим:

(2.3)

Эта формула однозначно связывает высоту потенциального барьера (при отсутствии внешнего напряжения) с концентрациями носителей в прилегающих к переходу областях, и наоборот концентрации носителей вблизи pn перехода с напряжением на нем:

, (2.4)

где ut=kT/q. Уравнение (2.4) можно рассматривать как граничные условия при нулевом внешнем напряжении U = 0.

Поскольку концентрация основных носителей примерно равна концентрации легирующей примеси (pp0 = Na, nn0 = Nd), и произведение равновесных концентраций электронов и дырок в одной области при заданной температуре равно квадрату концентрации собственных носителей заряда nn0pn0=pp0np0=ni2 (11/19) , то из (2.3) получим:

(2.4)

Таким образом потенциальный барьер в pn переходе тем выше, чем сильнее легированы p и n области. Соответствующая зависимость Uк от степени легирования областей показана на рис. 2.8.




Рис. 2.8. Зависимость контактной разности pn перехода уровня легирования областей pn перехода (Si, Т=300 К)


Из формулы (2.4) следует, что чем сильнее легированы области pn перехода, тем больше контактная разность потенциалов. С физической точки зрения это понятно: с увеличением степени легирования p области уровень Ферми приближается к валентной зоне, с увеличением степени легирования n области уровень Ферми приближается к зоне проводимости, в то же время как следует из диаграммы рис. 2.6 контактная разность равна разности уровней Ферми в изолированных p и n областях.

Диаграмма рис. 2.8 показывает, что при увеличении степени легирования областей контактная разность в пределе стремится к ширине запрещенной зоны Eg.

По мере роста температуры величина ni2 в (2.4) должно достигнуть постоянной величины NdNa. Таким образом выражение под знаком логарифма стремится к нулю, т.е. контактная разность потенциалов с ростом температуры уменьшается.

Этот результат понятен с физической точки зрения, поскольку с увеличением температуры возрастает вероятность межзонного возбуждения электронов, т.е. при высоких температурах начинает доминировать собственная проводимость как в p, так и в n области. Поскольку в собственных полупроводниках уровень Ферми лежит вблизи середине запрещенной зоны qUк = FnFp в конечном счете стремится к нулю, как это иллюстрирует рис. 2.9, рассчитанный по (2.4) с учетом того, что ni = √NcNv exp(-Eg/kT).

Зависимость контактной разности потенциалов pn переходов от температуры часто используют для создания датчиков температуры. По чувствительности эти датчики будут уступать датчикам, использующим температурную зависимость электропроводности полупроводников (термисторы), однако к их достоинствам можно отнести близкую к линейной зависимость контактной разности потенциалов от температуры, что значительно облегчает их калибровку.




Рис. 2.9. Зависимость контактной разности pn перехода от температуры при разном уровне легирования областей (Si - кривая 1: NdNa=1032 , кривая 2: NdNa=1028)


Еще раз остановимся на физической природе явлений, приводящих к возникновению на границе между p и n областями потенциального барьера. Если бы между p и n областями не было контакта, то каждая из них была бы электронейтральна, при этом соблюдались бы следующие условия: pp = Na-, nn = Nd+. При наличии между p и n областями контакта свободные электроны будут уходить из n области в соседнюю, оставляя вблизи границы в n области нескомпенсированный заряд положительных доноров - Nd+. Свободные дырки будут уходить из p области в соседнюю, оставляя вблизи гранцы в p области нескомпенсированный заряд отрицательных акцепторов - Na-. Поскольку доноры и акцепторы связаны с решеткой возникший двойной слой заряда так же встроен в решетку и не может перемещаться. При этом в области пространственного заряда (ОПЗ) возникает электрическое поле, направленное от n области к p области, препятствующее переходу основных носителей через границу областей. Чем больше переходит основных носителей, тем больше в нескомпенсированный заряд в ОПЗ, тем выше энергетический барьер, препятствующий переходу. Равновесие наступает при некотором соотношении между высотой барьера и концентрацией носителей заряда, которое описывается (2.3). При этом следует отметить, что в самой барьерной области (области пространственного заряда) концентрация носителей мала (она близка к собственной), поскольку все попадающие в ОПЗ носители выбрасываются из этой области электрически полем. Поэтому область пространственного заряда обладает проводимостью на несколько порядков меньшей, чем легированные p и n области. В дальнейшем будем считать, что сопротивление областей вне ОПЗ на несколько порядков меньше, чем сопротивление ОПЗ и если к полупроводниковой структуре с pn переходом приложено внешнее напряжение, то оно падает, в основном на ОПЗ, а в прилегающих к переходу p и n областях электрического поля практически нет (при построении модели происходящих процессов мы будем им пренебрегать).

Внимательно проанализировав диаграммы рис. 2.1 и 2.2 можно еще раз убедиться, что направление контактного электрического поля (Еконт) таково, что оно препятствует диффузии в соседнюю область основных носителей заряда и способствует переходу неосновных. Именно эта асимметрия потенциального барьера по отношению к носителям различного типа в конечном счете и приводит к асимметрии вольтамперной характеристики электронно-дырочного перехода относительно полярности внешнего напряжения. Поскольку при одной полярности внешнего напряжения поле внешней батареи будет складываться с внутренним полем Еконт, увеличивая барьер, при другом вычитаться, уменьшая барьер.

Лекция 7

2.3. Вольтамперная характеристика pn перехода


Если области pn перехода находятся при одной и той же температуре, при отсутствии приложенного к приложенного напряжения ток через него равен нулю, т.е. все потоки основных и неосновных носителей заряда компенсируют друг друга и встречные токи взаимно уравновешиваются. Однако, равновесие нарушается, если к диоду с pn переходом приложено внешнее напряжение. В этом случае обусловленное внешним источником напряжения электрическое поле складывается с внутренним контактным полем в переходе и, в зависимости от полярности внешнего источника, потенциальный барьере либо увеличивается либо уменьшается. При прямой полярности внешнего источника потенциальный барьер увеличивается и ток основных носителей заряда диффундирующих против электростатических сил поля pn перехода возрастает. При обратном включении внутреннее поле pn перехода складывается с внешним и величина потенциального барьера между p и n областями возрастает. Количество основных носителей способных преодолеть барьер уменьшается по мере роста высоты барьера и в конце концов становится равным нулю. Встречный ток Js создаваемый неосновными носителями, которые идут в направлении сил электростатического взаимодействия с полем pn перехода и для которых не существует потенциального барьера, при изменении высоты барьера остается постоянным, он не зависит от высоты барьера и его величина определяется только числом неосновных носителей попадающих в область пространственного заряда (np и pn).

Для того, чтобы на феноменологическом уровне описать вольтамперные характеристики диода с pn переходом допустим, что все приложенное к диоду внешнее напряжение падает на pn переходе. Поскольку сопротивление ОПЗ на несколько порядков выше, чем сопротивление толщи материала p и n областей и омических контактов к ним это допущение вполне оправдано. Тогда изменение величины барьера будет соответствовать величине приложенного напряжения. В соответствии с принятым ранее соглашением напряжение считается положительным, если плюс приложен к p области а минус к n, и отрицательны при обратной полярности внешнего напряжения относительно p и n областей. Тогда высоты барьера:

, (2.5)

где Uк- контактная разность потенциалов, U – внешнее напряжение.

Баланс токов через переход можно записать в виде:

(2.6)

где ut = kT/q, иногда эту величину называют тепловым потенциалом, поскольку kT – соответствует максимуму кинетической энергии электронов при температуре T. При T = 300К ut ~ 26 мВ. Значение предэкспоненциального множителя в выражении для Jдиф принято равным Js, чтобы обеспечить при отсутствии напряжения на pn переходе равенство нулю общего тока.

Формула (2.6) удовлетворительно описывает ВАХ pn перехода и характеристики диода при малых токах, когда падение напряжения на прилегающих к переходу областях значительно меньше, чем падение напряжения на самом переходе. На рис. 2.10. показаны вольтамперные характеристики (слева в линейном масштабе, справа в логарифмическом), построенные по (2.6) при значении Js = 2 10-4 A .

При U>0 и U>ut единицей в (2.6) можно пренебречь и прямая ветвь pn перехода хорошо описывается экспоненциальной зависимостью J = Jsexp(U/ut).

Рис. 2.10. Вольтамперная характеристика pn перехода


Уравнение (2.6), описывающее вольтамперную характеристику pn перехода является феноменологическим, т.е. оно получено на основе рассмотрения явлений (явление – phenomena англ.) происходящих в диоде с pn переходом, но оно не дает нам возможности связать характеристику диода с электрофизическими параметрами его областей. К электрофизическим параметрам материала относятся те параметры, которые рассматривались в разделе 1, т.е. концентрация носителей заряда (примесей), время их жизни, подвижность и т.д. Уравнение (2.6) так же не дает ответ на вопрос о температурной зависимости тока, поскольку нам неизвестна температурная зависимость тока Js.

Для того, чтобы решать задачи устанавливающие количественную связь между характеристики полупроводникового прибора, его конструктивно-технлогическими параметрами и влиянием окружающей среды, необходимо создать количественную модель прибора. Для создания физико-математической модели необходимо записать уравнения связывающие между собой концентрации заряда, электрические токи (потоки) и электрический потенциал (или поле). Можно использовать три уравнения. Уравнение для тока как суммы диффузионного и дрейфового см. (1.57, 1.61):

(2.7)

Уравнение непрерывности см (1.66) , в дальнейшем будем рассматривать только одномерные модели, т.е. считать что концентрация носителей заряда, потенциала и всех параметров по сечению образца постоянны, тогда:

(2.8)

И уравнение Пуассона:

, (2.9)

где ρ(x) – распределение зарядов.

Как правило при создании моделей эти уравнения значительно упрощаются за счет принимаемых допущений.

Поскольку исходные уравнения носят дифференциальную форму для их решения необходимо задать начальные условия. Для биполярных приборов с pn переходом в качестве граничных условий задаются либо концентрация неосновных носителей заряда на границе, либо значение инжекционного тока (тока неосновных носителей заряда) на границе при напряжении на заданном электронно-дырочном переходе:

(2.10)

Граничные условия можно задать и в таком виде:

, (2.11)


т.е. задаются граничные концентрации, а напряжение на переходе определяется функциональной связью между концентрацией и высотой барьера.

Для того, чтобы записать граничные условия – зависимость концентраций неосновных носителей заряда от внешнего напряжения вернемся еще раз к вопросу о распределении носителей заряда в разрешенных зонах по энергиям.

Распределение электронов (дырок) по энергиям в разрешенных зонах определяется произведением плотности состояний на функцию распределения nn(E) = N(E)f(E) см. п.п. 1.2.4. Для невырожденных полупроводников c хорошей степенью точности можно считать, что в разрешенной зоне вероятность нахождения свободных носителей заряда в разрешенной зоне на высоких энергетических уровнях убывает с увеличением их энергии по экспоненте (в соответствии с распределением Больцмана), поэтому зависимость концентрации носителей от энергии имеет максимум вблизи дна зоны (он обусловлен произведением N(e)f(E) см. п.п. 1.2.4) и экспоненциальный спад в области высоких энергий. Потенциальный барьер pn перехода могут преодолеть только те основные носители (электроны nn или дырки pp) энергия которых равна или больше энергии потенциального барьера.

Будем считать что все приложенное внешнее напряжение U падает на pn переходе, тогда высота барьера Uбар = UкU см. (2.5). Связь граничной концентрации с высотой барьера должна иметь тот же вид, что и (2.4), поскольку при наложении напряжения FnFp = qUбар = q(Uк - U):

(2.12)

Из (2.12) видно, что при приложении к переходу (диоду) прямого напряжения U>0 (часто говорят смещения, т.е смещения уровней Ферми пропорционального приложенному напряжению) концентрация неосновных носителей на границе возрастает экспоненциально с напряжением (происходит их инжекция из соседней области).

При приложении к переходу (диоду) обратного смещения U<0 концентрация неосновных носителей экспоненциально уменьшается, поскольку из соседней области носители перестают поступать, а все неосновные носители генерируемые теплом в этой области попав на границу ОПЗ подхватываются электрическим полем и перебрасываются в соседнюю область. Влияние увеличения высоты потенциального барьера на граничную концентрацию носителей заряда при обратном смещении на pn переходе иллюстрируют диаграммы рис. 2.11.


Рис. 2.11 Диаграммы, поясняющие влияние высоты потенциального барьера на переход электронов из n области в p область.


Поскольку при обратном напряжении уже в 1 В граничная концентрация неосновных носителей заряда становится чрезвычайно малой (меньше одного электрона (дырки) в 1 см-3), будем считать, что при обратных напряжениях на переходе превышающих 1 В граничные концентрации носителей заряда равны 0.

Из уравнений (2.12) легко можно определить значения напряжения на pn переходе по значениям граничных концентраций:

(2.13)

Эти уравнения можно рассматривать как еще одну форму записи граничных условий.

При использовании (2.12) и (2.13) следует помнить, что в полупроводниковых приборах с хорошей степенью точности удовлетворяются равенства nn0 ~ Nd , pp0 ~ Na , тогда pn0 ~ ni2/Nd и np0 ~ ni2/Na. Таким образом зная концентрации примеси мы всегда можем рассчитать равновесные концентрации основных и неосновных носителей и величину контактной разности потенциалов (2.3). Зная же величину приложенного напряжения определить граничные концентрации носителей заряда (2.12)



Рис. 2.12. Энергетическая диаграмма pn перехода, к которому приложено обратное (увеличивающее высоту барьера) напряжение батареи Uб.


На рис. 2.12 показана энергетическая диаграмма pn перехода, включенного в обратном направлении. Как видно из диаграммы при обратном включении электронные уровни соседних областей получают дополнительное смещение друг относительно друга на величину потенциальной энергии qUб, соответствующей напряжению внешней батареи. При этом уровни Ферми в соседних зонах расходятся на величину qUб в направлении соответствующем увеличению высоты барьера. Теперь для всей системы единого уровня Ферми нет, это отражает тот факт, что равновесие между ее частями нарушено и количество переходящих через барьер в противоположных направлениях носителей зарядов не будет равно.

Рассмотрим случай, когда полярность внешней батареи изменяется на противоположную и к переходу приложено прямое напряжение U>0 (рис. 2.13). При этом создаваемое внешней батареей электрическое поле уменьшает электрическое поле, создаваемое контактной разностью потенциалов и высота барьера уменьшается на величину напряжения батареи. Квазиуровни Ферми расходятся друг относительно друга на величину qU, но в другую сторону.

Как видно из (2.12) и рис. 2.13 прямое смещение в пределе ведет к исчезновению потенциального барьера, поэтому в пределе оно не может быть больше величины контактной разности потенциалов Uк. Действительно, в рассмотренной модели идеального pn перехода сопротивление примыкающих к переходу легированных областей полагалось равным нулю и ток через переход определялся только свойствами барьера, поэтому когда барьер исчезает (его сопротивление стремится к нулю), то ток через переход должен стремиться к бесконечности. Для реальных диодов он будет ограничиваться сопротивлением легированных областей на которых будет дополнительное падение напряжения и в результате прямое падение напряжения на диоде может превышать контактную разность потенциалов.





Рис. 2.13. Энергетическая диаграмма pn перехода, к которому приложено прямое (уменьшающее высоту барьера) напряжение батареи Uб.


При создании расчетной модели pn перехода примем ряд допущений (эту модель иногда называют моделью Шокли). Будем считать:

  • полагается, что концентрации носителей заряда и значения электрических полей по любому сечению образца постоянные, т.е. возможно применить одномерное рассмотрение задачи;

  • полагается, что приложенное к pn переходу внешнее напряжение падает в основном на области пространственного заряда и электрическое поле в примыкающих к переходу мало и им можно пренебречь;

  • полагается, что носители заряда проходят область пространственного заряда без рекомбинации, т.е. мы пренебрегаем генерационно-рекомбинационными процессами в области пространственного заряда, считая что токи создаваемые носителями заряда рекомбинирующими и возникающими за счет тепла в ОПЗ значительно меньше токов создаваемых переносом заряда через барьер как при прямом так и обратном включении перехода;

  • допускается, сто pn переход резкий, т.е. концентрация доноров и акцепторов на границе изменяется скачком (рис. 2.7);

  • допускается, что параметры материала как время жизни носителей заряда и их подвижность постоянные и не зависят от концентрации инжектированных носителей заряда. Поскольку постоянство параметров материала соблюдается при небольших уровнях инжекции будем считать, что в рассматриваемой модели соблюдаются условия: ∆p<n0, ∆n<n0.

Рассмотрим геометрию, когда p область находится слева n область справа (рис. 2.7), соответственно ось x направлена слева направо. Расчет выполним для о n области, распространив его результаты на p область (заменой соответствующих индексов). За начало координат примем границу области пространственного заряда, т.е. будем рассматривать только часть n область, в которой электрическое поле отсутствует. Поскольку принято, что ОПЗ носители заряда проходят без потерь, число входящих и выходящих из ОПЗ электронов и дырок с обеих сторон должно совпадать.

Для расчета воспользуемся уравнением непрерывности (2.66):

Для n области n>>p и соответственно см. (1.67): μ = μp , D = Dp. При принятых допущениях в рассматриваемой области (вне ОПЗ) E = 0. Поскольку рассматриваются статические характеристики, то можно считать что концентрация носителей заряда со временем не изменяется и ∂∆p/∂t =0.

Подставив соответствующие значения в уравнение непрерывности получим:

(2.67)

где Lp - диффузионная длина, характеризующая расстояние, на которое могут продиффундировать инжектированные неосновные носители заряда за время жизни. В данном рассмотрении будем считать, что диффузионная длина значительно меньше длины образца и инжектированные через переход носители не достигают второй границы рекомбинируя по дороге. Будем считать, что к pn переходу приложено внешнее напряжение U, соответственно граничные условия для решения уравнение (2.67) имеют вид:

(2.68)


Решение однородного уравнения второго порядка (1.67) имеет вид:

(2.69)


Положив x = 0 из условия (а) в (1.68) находим:

(2.70)

Из условия (б) в (1.68) находим B = 0. Таким образом решение имеет вид:

(2.71)


Физический смысл решения (2.71) очевиден: концентрация неосновных носителей заряда вблизи перехода определяется тем сколько их вошло из соседней области (она зависит от высоты барьера) и глубина их проникновения за счет диффузии зависит от значения их диффузионной длины, т.е., в конечном счете, их времени жизни, подвижности и температуры.

На рис. 2.14 показано, соответствующее (2.71) распределение носителей заряда при положительном (кривая 1) и отрицательном (кривая 2) смещении на переходе. При положительном смещении на переходе граничное значение превышает равновесную концентрацию и имеет место инжекция неосновных носителей заряда. При отрицательном смещении (|U| >UT) граничная концентрация примерно равна нулю, все подходящие к ОПЗ неосновные носители перебрасываются в соседнюю область, а из соседней области носители не поступают, поскольку высота барьера много больше их тепловой энергии см. рис. 2.12.

Как видно из (1.67) уравнение непрерывности свелось к диффузионному уравнению и следовательно ток вблизи барьера в n-области будет, в основном диффузионным.

Из рис. 2.14 видно, что при положительном и отрицательном смещении градиент концентрации вблизи перехода имеет разный знак и соответственно при положительном смещении диффузионный ток направлен от перехода вглубь n - (имеет место инжекция неосновных носителей заряда), при отрицательном смещении направление тока изменяется на противоположное и происходит вытягивание неосновных носителей заряда



Рис. 2.14. Распределение носителей заряда в приконтактной области при положительном (кривая 1) и отрицательном (кривая 2) включениях pn перехода.


Рассчитаем плотность дырочного тока, проходящего через барьер при x = 0:

(2.72)

Аналогично, решая диффузионное уравнение для n области, можно получить плотность электронного тока (при этом все значки "p" изменяются на "n", значки "n" изменяются на "p"):

(2.73)

Поскольку через барьер перенос тока осуществляется только электронами и дырками и должно сохраняться условие постоянства тока по всей длине образца, то полный ток получим взяв его значение в любом сечении. Рассчитаем ток положив x=0:

(2.74)

Формула (2.74) описывает зависимость тока через pn переход от приложенного к нему напряжения, т.е. статическую вольтамперную характеристику pn перехода. Соответствующие ей графики в линейном и логарифмическом масштабах были показаны на рис. (при феноменологическом выводе этой же формулы)

Экспоненциальная зависимость, как неоднократно отмечалось, следует из больцмановского распределения электронов по энергиям. Действительно, чем выше барьер, тем меньшее количество электронов может его преодолеть. Инжекционный ток состоит из электронной и дырочной компонент, соотношение между которыми зависит от соотношения между токами Jsp и Jsn и определяется электропроводностью и временем жизни неосновных носителей заряда в соответствующих областях. Действительно использовав переход от коэффициента диффузии к подвижности Dn=(kTμn)/q, Dp=(kTμp)/q) (соотношение Эйнштейна) и (2.72) и (2.73) получим:

(2.75)

Таким образом, если p область легирована значительно сильнее донорной Na>>Nd и соответственно σp>>σn, то при близких значения времен жизни Jsp>>Jsn и ток через переход будет создаваться преимущественно дырками, причем величина этого тока зависит от величины прямого смещения.

Таким образом создав в кристалле pn переход мы формируем потенциальный барьер, который дает средство для управления током. Причем изменяя степень легирования областей мы можем задавать условия для преимущественного протекания через барьера электронных или дырочных потоков. Именно эти свойства избирательного управления потоками носителей заряда легли в основу большей части биполярных приборов.

При значительном обратном смещении высота барьера настолько велика, что тепловой энергии для преодоления барьера становится недостаточно и тогда в уравнении (2.74) начинает доминировать второй член: Js = Jsn + Jsp. Этот член соответствует потоку неосновных носителей заряда, встречному по отношению к только что рассмотренному диффузионному потоку основных носителей заряда. Для, создающих обратный ток перехода неосновных носителей, нет барьера и поэтому те из них, которые дошли до перехода подхватываются электрическим полем и перебрасываются в соседнюю область. Именно отсутствием для этих носителей барьера объясняется то, что в рассмотренной модели обратный ток не зависит от приложенного напряжения. Обратный ток пропорционален концентрации неосновных носителей заряда, темп генерации неосновных носителей определяется температурой, поэтому его часто называют тепловым:

(2.76)

Как следует из (2.76) обратный ток экспоненциально зависит от температуры. Наличие обратного тока ухудшает вентильные свойства pn перехода, поэтому его стремятся уменьшить взяв материал с большей запрещенной зоной. Так, например, в переходах на основе Si обратный ток примерно в тысячу раз меньше, чем в переходах на основе Ge. Однако, как следует из (2.76) сам ток с увеличением Eg уменьшается, однако его зависимость от температуры становится сильнее (см. аналогичные температурные зависимости для σi на рис. 1.1).


2.4. Влияние генерационно-рекомбинационных процессов на ВАХ pn перехода.


Из (1.74) для обратных токов электронов и дырок мы можем написать:

(2.77)

Физический смысл правой части уравнения (2.77) заключается в том, что обратный ток создается неосновными носителями, генерируемыми в примыкающих к области пространственного перехода области n и p баз диода на расстоянии диффузионных для от него. Предполагалось, что генерацией неосновных носителей заряда в обедненной области длиной d можно пренебречь. Это условие действительно справедливо для случай когда Lp>>d или Ln>>d или когда высока концентрация pn0, np0, т.е. ширина запрещенной зоны не очень велика (например в Ge). Однако для таких материалов как Si и GaAs генерационно-рекомбинационный ток в ОПЗ может быть сравним с током насыщения диода, создаваемым np и pn.


Случайные файлы

Файл
СП 42-104-97.doc
21169-1.rtf
132839.rtf
58827.rtf
30063-1.rtf