Статистика в обработке материалов психологических исследований (131771)

Посмотреть архив целиком

Статистика в обработке материалов психологических исследований

Статистические методы применяются при обработке материалов психологических исследований для того, чтобы извлечь из тех коли­чественных данных, которые получены в экспериментах, при опросе и наблюдениях, возможно больше полезной информации. В частности, в обработке данных, получаемых при испытаниях по психологиче­ской диагностике, это будет информация об индивидуально-психоло­гических особенностях испытуемых. Психологические исследования обычно строятся с опорой на количественные данные.

Вот пример.

К школьному психологу обратился шестиклассник Саша Ю. с прось­бой испытать его двигательный темп. Его очень интересовал баскетбол, и он собирался вступить в баскетбольную команду, а баскетболист, не­сомненно, должен иметь высокий двигательный темп. Психолог разра­ботал план небольшого исследования. Он начал с того, что попросил Сашу так быстро, как он только может, ставить точки в центре кружков, нарисованных на листке бумаги. За одну минуту мальчик поставил 137 то­чек. Насколько этот темп характерен для него? Чтобы установить это, психолог попросил Сашу повторить эту пробу 25 раз. Действительно, некоторые результаты превышали первоначально полученное число, но некоторые оказались и поменьше. Психолог просуммировал все полу­ченные за 25 проб результаты, а сумму разделил на 25 — таким путем он получил среднее арифметическое по всем пробам. Это среднее ариф­метическое составило 141. Таков по этой пробе максимальный темп это­го мальчика. Можно ли считать этот темп высоким? Потребовался еще один шаг в исследовании. Психолог сформировал группу из 50 шести­классников, не отличающихся от Саши и друг от друга по возрасту более чем на полгода. С этими ребятами психолог также провел сначала по несколько тренировочных проб, чтобы получить надежные данные об их темпе, и, наконец, последнюю пробу для обработки.

Все эти данные в виде средних арифметических были построены в один порядковый ряд, который был разбит по десяткам (по децилям).

Сашины данные вошли в первый десяток с наиболее быстрыми резуль­татами. По этим количественным данным психолог сделал вывод о том, что мальчик обладает сравнительно высоким двигательным темпом, о чем и было ему сообщено.

Современная математическая статистика представляет собой боль­шую и сложную систему знаний. Нельзя рассчитывать на то, что каж­дый психолог овладеет этими знаниями. Между тем статистика нужна психологу постоянно в его повседневной работе. Специалисты-стати­стики разработали целый комплекс простых методов, которые совер­шенно доступны любому человеку, не забывшему то, что он выучил еще в средней школе.

В зависимости от требований, которые предъявляют к статистике различные области науки и практики, создаются пособия по геологи­ческой, медицинской, биологической, психологической статистике '.

В этом приложении даются простейшие методы статистики для пси­хологов. Все необходимые для их применения вычисления можно вы­полнять вручную или на компьютере. Уместное грамотное применение этих методов позволит практику и исследователю, во всяком случае проведя начальную обработку, получить общую картину того, что дают количественные результаты его исследований, оперативно проконт­ролировать ход исследований. В дальнейшем, если возникнет такая необходимость, материалы исследований могут быть переданы для более глубокой разработки специалисту-статистику на большой компьютер.


Статистические шкалы


Применение тех или других статистических методов определяется тем, к какой статистической шкале относится полученный материал. С. Стивенс предложил различать четыре статистические шкалы:

  1. шкалу наименований (или номинальную);

  2. шкалу порядка;

  3. шкалу интервалов;

  4. шкалу отношений.

Зная типические особенности каждой шкалы, нетрудно установить, к какой из них следует отнести подлежащий статистической обработ­ке материал.

Шкала наименований. К этой шкале относятся материалы, в ко­торых изучаемые объекты отличаются друг от друга по их качеству.

При обработке таких материалов нет никакой нужды в том, чтобы располагать эти объекты в каком-то порядке, исходя из их характери­стик. В принципе, объекты можно располагать в любой последователь­ности.

Вот пример: изучается состав международной научной конференции. Среди участников есть французы, англичане, датчане, немцы и русские. Имеет ли значение порядок, в котором будут расположены участники при изучении состава конференции? Можно расположить их по алфавиту, это удобно, но ясно, что никакого принципиального значения в этом распо­ложении нет. При переводе этих материалов на другой язык (а значит и на другой алфавит) этот порядок будет нарушен. Можно расположить национальные группы по числу участников. Но при сравнении этого ма­териала с материалом другой конференции найдем, что вряд ли этот порядок окажется таким же. Отнесенные к шкале наименований объек­ты можно размещать в любой последовательности в зависимости от цели исследования.

При статистической обработке такого рода материалов нужно счи­таться с тем, каким числом единиц представлен каждый объект. Име­ются весьма эффективные статистические методы, позволяющие по этим числовым данным прийти к научно значимым выводам (напри­мер, метод хи-квадрат).

Шкала порядка. Если в шкале наименований порядок следования изучаемых объектов практически не играет никакой роли, то в шкале порядка — это видно из ее названия — именно на эту последователь­ность переключается все внимание.

К этой шкале в статистике относят такие исследовательские ма­териалы, в которых рассмотрению подлежат объекты, принадлежа­щие к одному или нескольким классам, но отличающиеся при их сравне­нии одного с другим — «больше-меньше», «выше-ниже»- и т. п.

Проще всего показать типические особенности шкалы порядка, если об­ратиться к публикуемым итогам любых спортивных соревнований. В этих итогах последовательно перечисляются участники, занявшие соответ­ственно первое, второе, третье и следующие по порядку места. Но в этой информации об итогах соревнований нередко отсутствуют или отходят на второй план сведения о фактических достижениях спортсменов, а на первый план ставятся их порядковые места.

Допустим, шахматист Д. занял в соревнованиях первое место. Како­вы же его достижения? Оказывается, он набрал 12 очков. Шахматист Е. занял второе место. Его достижение — 10 очков. Третье место занял Ж. с восемью очками, четвертое — 3. с шестью очками и т. д. В сообщениях о соревновании разница в достижениях при размещении шахматистов отходит на второй план, а на первом остаются их порядковые места. В том, что именно порядковому месту отводится главное значение, есть свой смысл. В самом деле, в нашем примере З. набрал шесть, а Д. — 12 очков. Это абсолютные их достижения — выигранные ими партии. Если попытаться истолковать эту разницу в достижениях чисто арифме­тически, то пришлось бы признать, что 3. играет вдвое хуже, чем Д. Но с этим нельзя согласиться. Обстоятельства соревнований не всегда про­сты, как не всегда просто и то, как провел их тот или другой участник. Поэтому, воздерживаясь от арифметической абсолютизации, ограничи­ваются тем, что устанавливают: шахматист 3. отстает от занявшего пер­вое место Д. на три порядковых места.

Шкала интервалов. К ней относятся такие материалы, в которых дана количественная оценка изучаемого объекта в фиксированных еди­ницах.

Вернемся к опытам, которые провел психолог с Сашей. В опытах учиты­валось, сколько точек могут поставить, работая с максимально доступ­ной им скоростью, сам Саша и каждый из его сверстников. Оценочными единицами в опытах служило число точек. Подсчитав их, исследователь получил то абсолютное число точек, которое оказалось возможным по­ставить за отведенное время каждому участнику опытов. Главная труд­ность при отнесении материалов к шкале интервалов состоит в том, что нужно располагать такой единицей, которая была бы при всех повтор­ных измерениях тождественной самой себе, т. е. одинаковой и неизмен­ной. В примере с шахматистами (шкала порядка) такой единицы вообще не существует.

В самом деле, учитывается число партий, выигранных каждым участ­ником соревнований. Но ясно, что партии далеко не одинаковы. Воз­можно, что участник соревнований, занявший четвертое место — он выиграл шесть партий, — выиграл труднейшую партию у самого лидера! Но в окончательных итогах как бы принимается, что все выигранные партии одинаковы. В действительности же этого нет. Поэтому при рабо­те с подобными материалами уместно их оценивать в соответствии с требованиями шкалы порядка, а не шкалы интервалов. Материалы, соответствующие шкале интервалов, должны иметь единицу измерения.

Шкала отношений. К этой шкале относятся материалы, в которых учитываются не только число фиксированных единиц, как в шкале ин­тервалов, но и отношения полученных суммарных итогов между собой. Чтобы работать с такими отношениями, нужно иметь некую абсолют­ную точку, от которой и ведется отсчет. При изучении психологиче­ских объектов эта шкала практически неприменима.



О параметрических и непараметрических методах статистики


Приступая к статистической обработке своих исследований, психо­лог должен решить, какие методы ему более подходят по особенностям его материала — параметрические или непараметрические. Раз­личие между ними легко понять.

Ранее уже говорилось об измерении двигательной скорости детей-шес­тиклассников.


Случайные файлы

Файл
175695.rtf
73570-1.rtf
72511-1.rtf
9124-1.rtf
35747.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.