Обзор существующих конструкций индукционно-динамических механизмов (125207)

Посмотреть архив целиком

Тема: "ОБЗОР СУЩЕСТВУЮЩИХ КОНСТРУКЦИЙ ИНДУКЦИОННО-ДИНАМИЧЕСКИХ МЕХАНИЗМОВ"


Привод электрического аппарата представляет собой систему взаимосвязанных устройств и механизмов, предназначенную для выполнения требуемых механических операций и их циклов, обеспечивающих работоспособность аппарата в условиях эксплуатации. В электрических аппаратах широко используются ручные, электромагнитные, электродвигательные, пружинные, пневматические и гидравлические (пневмогидравлические) приводы.


Рис. 1. Схематическое изображение привода.


Привод состоит из источника энергии ИЭ (рис. 1), пускового устройства управления УП, силового механизма СМ и накопителя энергии НЭ. В ручных приводах используется мускульная энергия оператора. В электромагнитных и электродвигательных приводах источником энергии является непосредственно электрическая сеть. B пружинных, пневматических и гидравлических приводах используется энергия, предварительно запасенная в аккумуляторах (соответственно в пружинных, пневматических и пневмогидравлических аккумуляторах). В качестве пусковых устройств применяются кнопки управления, тиристоры, электромагнитные пневматические (гидравлические) клапаны и т. п. В силовых механизмах, связанных с контактами, для передачи усилия используются твердые кинематические цепи, сжатый газ, жидкость высокого давления.

Накопитель энергии обеспечивает выполнение одной из операций. Так, в конструкциях электрических аппаратов пружинный приводной механизм часто применяется вместе с ручным, электромагнитным, пневматическим или гидравлическим приводным устройством, которое, совершая операцию отключения (или включения), взводит аккумулирующие пружины, а, следовательно, подготавливает аппарат для выполнения операции включения (или отключения).

Работа каждого элемента привода взаимосвязана с работой других элементов и устройств, а время срабатывания отдельных элементов в совокупности определяет время отключения (включения) аппарата.

Электромагнитными называют такие устройства, которые предназначены для создания магнитного поля в определенном объеме пространства с помощью обмотки, обтекаемой электрическим током.

Во многих электромагнитных устройствах магнитное поле используется для создания электромагнитных сил, вызывающих перемещение подвижных частей и совершающих механическую работу.

При этом подвижные части движутся по заданной траектории и преодолевают силы сопротивления, определяемые механической характеристикой. Такие электромагнитные устройства называют электромагнитными механизмами (ЭММ). ЭММ. используются в электроаппаратостроении в основном в качестве приводов. Электромагнитные механизмы, имеющие магнитную систему из ферромагнитных материалов, иногда называют электромагнитами (ЭМ).

Широкое использование ЭММ привело к появлению большого количества их разнообразных конструктивных исполнений и способов питания их обмоток. Все ЭММ можно отнести к двум группам: ЭММ с магнитной системой (МС) и без нее. Под МС (или, что то же, под магнитной цепью) будем понимать такую совокупность тел и сред, которая при наличии магнитодвижущей силы (МДС) создает ориентированный магнитный поток.

ЭММ с МС постоянного (рис. 2) и переменного (рис. 3) токов, а также поляризованные ЭММ (рис. 4) состоят из узлов, имеющих общее назначение. На этих рисунках обмотка 1 (иногда называемая обмоткой управления) закреплена на неподвижных частях магнитопровода 2. Магнитный поток, проходя по неподвижным и подвижным частям 3 (которые называют якорем), создает силу притяжения (отталкивания), вызывающую перемещение якоря и связанных с ним деталей. У ЭМ якорь может совершать вращательное (рис. 2, а—г, и, к и 3, а) или поступательное (рис. 2,д—з, л и 3, б—д) движения. МС типа (рис. 2,а—г и 3, а) называют клапанными; типа (рис. 2, е, ж и 3, б, в, д) — прямоходовыми; типа (рис. 2, д, з, ли 3, г) — с втягивающимся якорем.


Рис. 2.Магнитные системы постоянных магнитов.


На рис. 4 у поляризованных ЭММ кроме обмоток управления имеется источник МДС 4, создающий поляризующий магнитный поток Фд Это может быть как специальная поляризующая обмотка, так и поляризующий постоянный магнит. Пока тока в обмотке управления 1 нет, на якорь действуют силы, определяемые поляризующим потоком в зазоре между якорем и неподвижными частями МС. МДС обмотки управления создает магнитный поток управления Фу (управляющий поток) .В зависимости от направления тока в обмотке управления управляющий поток в зазоре совпадает с поляризующим или противоположен ему по направлению. В соответствии с этим якорь испытывает повышенное или уменьшенное тяговое усилие в рассматриваемом зазоре


Рис. 3. Магнитные системы переменного тока.


Используя это явление, можно перебросить якорь поляризованных ЭММ в нужное положение. Так как после срабатывания у большинства поляризованных ЭММ, выполненных без преобладания положения якоря у одной из частей МС, якорь надежно удерживается поляризующим магнитным потоком, то для срабатывания таких ЭМ по обмоткам управления достаточно пропускать ток управления не длительно, а в течение малого времени, необходимого для перебрасывания якоря. Иными словами, поляризованные ЭМ допускают импульсное управление. Преобладание якоря можно обеспечить специальной настройкой ЭМ. Например, если установить упор 5 (см. рис. 4, д) так, чтобы он не позволял якорю при срабатывании переходить за ось симметрии, то при снятии управляющего сигнала якорь повернется против часовой стрелки в результате воздействия поляризующего потока Фпг.

Таким образом, обеспечивается преобладание положения якоря, а настройка такого ЭМ носит название однопозиционной. Двухпозиционная настройка ЭМ (рис. 4, е—з) обеспечивает якорю равные возможности его пребывания в одном из двух фиксированных положений. Кроме одно- и двухпозиционной настройки применяется еще настройка со средним (нейтральным) положением якоря, обеспечивающая при снятии тока управления возврат якоря (например, с помощью пружин) в среднее (нейтральное) положение.


Рис. 4. Магнитные системы поляризованных магнитов.


Поляризованные ЭМ по исполнению МС можно подразделить на ЭМ с последовательной (рис. 4, а, б), параллельной (рис. 4, в—д, ж, з) и мостовой (рис. 4, е) магнитными цепями. Такое подразделение определяется путями для поляризующего магнитного потока.

Поляризованные ЭМ выгодно отличаются от других ЭММ повышенной чувствительностью к управляющему сигналу, относительно высоким КПД и быстродействием. Это объясняется тем, что у этих ЭМ в МС заранее запасена магнитная энергия (за счет источника МДС 4), а управляющему сигналу необходимо лишь ее перераспределить. Наиболее высокой чувствительностью отличаются ЭМ с мостовой магнитной цепью.

К группе ЭММ с МС можно отнести применяемые в электроаппаратостроении в качестве приводов электродинамические и индукционно-динамические механизмы.


Рис. 5. Основные типы электродинамических и индукционно-динамических механизмов.


На рис. 5, а—в изображены электродинамические механизмы (ЭДМ), а на рис. 5, г—е—индукционно-динамические механизмы (ИДМ) с неподвижной МС. Эти ЭДМ и ИДМ по сравнению с ИДМ, имеющими подвижную МС, обладают менее высокими энергетическими характеристиками и КПД, однако они позволяют получать меньшие времена трогания и срабатывания. ЭДМ и ИДМ являются механизмами импульсного действия. Их обмотки питаются большим импульсным током. В результате этого достигается высокая плотность магнитной энергии в зазоре между проводниками с токами, что вызывает появление больших (до 200 кН и более) электродинамических усилий (ЭДУ), действующих на проводники.

Так как подвижные массы этих механизмов относительно невелики, то электродинамические силы вызывают значительные ускорения движущихся частей. Поэтому ЭДМ и ИДМ обладают высоким быстродействием. Отличие ЭДМ (рис. 5,и—в) от ИДМ (рис. 5,г—е) заключается в том, что в ЭДМ во всех токоведущих элементах ток определяется как переменным магнитным полем, так и сторонними источниками энергии, а в ИДМ в отдельных токоведущих элементах только переменным магнитным полем.

На рис. 5 источником энергии является конденсатор, предварительно заряженный до напряжения Uco.Заметим, что катушки 1, 3, 4 (рис. 5,й, б) могут подключаться каждая к своему отдельному источнику питания. При замыкании ключа К по катушкам начинает проходить ток. В варианте ЭДМ с двумя катушками (рис. 5,а) при указанном направлении токов наибольшая плотность магнитной энергии в зазоре между катушками и, следовательно, на катушки действует расталкивающая сила, вызывающая перемещение подвижной катушки 3 и связанных с ней деталей. Магнитопровод 2 для этого и других вариантов ЭДМ (и ИДМ) служит для увеличения магнитной проводимости путей потоков, текущих вне рабочих зазоров 6. Рабочий зазор при электродинамической силе, превышающей противодействующую меха­ническую силу, определяемую механической характеристикой, увеличивается в направлении хода х подвижных частей 3. ЭДМ (рис. 5,6) содержит три катушки. При изображенном направлении тока между катушками 1 и 3 возникает сила отталкивания, а между катушками 3 и 4 — притягивания. Эффективность такого ЭДМ значительно выше, чем ЭДМ (рис. 5,а). Кроме того, этот ЭДМ имеет симметричную тяговую характеристику относительно плоскости, делящей зазор  пополам.

Тяговой характеристикой ЭММ называется зависимость электромагнитного усилия (ЭМС) F от значения зазора  при неизменном значении тока во всех токоведущих частях. Для ЭДМ на рис. 5 это может быть зависимость F() или F(1). При определенных значениях зазора d, размерах катушек и МС ЭМС такого ЭДМ может оставаться практически постоянным при изменении зазора. В некоторых случаях практического использования ЭММ такой вид тяговой характеристики имеет первостепенное значение. Важным преимуществом рассматриваемого ЭДМ является возможность формирования тяговой характеристики нужного вида.






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.